首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   571篇
  免费   13篇
  国内免费   18篇
测绘学   9篇
大气科学   95篇
地球物理   119篇
地质学   156篇
海洋学   173篇
天文学   27篇
综合类   9篇
自然地理   14篇
  2023年   2篇
  2022年   6篇
  2021年   14篇
  2020年   12篇
  2019年   8篇
  2018年   29篇
  2017年   34篇
  2016年   43篇
  2015年   41篇
  2014年   36篇
  2013年   37篇
  2012年   34篇
  2011年   53篇
  2010年   43篇
  2009年   35篇
  2008年   26篇
  2007年   24篇
  2006年   25篇
  2005年   20篇
  2004年   12篇
  2003年   18篇
  2002年   9篇
  2001年   8篇
  2000年   5篇
  1999年   8篇
  1998年   2篇
  1997年   6篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1973年   1篇
排序方式: 共有602条查询结果,搜索用时 15 毫秒
151.
Based on a δ18O chronology,rare earth elements(REE) and other typical elements in sediments from core MD06-3047 in the western Philippine Sea were analyzed to constrain the provenances of the sediments and investigate quantitative changes in the Asian eolian input to the study area over the last 700 ka.Among the competing processes that might affect REE compositions,sediment provenance is the most important one.Provenance analysis suggests that the study sediments have two provenance end-members;local volcanic sources are dominant,and eolian dust from the Asian continent has a smaller contribution.During glacial periods,eolian input to the western Philippine Sea was enhanced.In contrast,material supply from local volcanics increased during interglacial periods.Changes in eolian input to the study area were probably related to the strength of the East Asian winter monsoon(EAWM) as well as aridity in the Asian continent on an orbital time scale,and were partly influenced by local control factors on shorter time scales.Therefore,we propose that the present study expands the application of the REE-based method for quantitatively estimating the eolian component from the mid-latitude northern Pacific to the low-latitude western Pacific.Additionally,the study preliminarily confirms the influence of EAWM-transported eolian material on sedimentation in the western Philippine Sea since 700 ka.  相似文献   
152.
Using the Paleoclimate Modeling Inter-comparison Project Phase 2 and 3 (PMIP2 and PMIP3), we investigated the tropical Pacific climate state, annual cycle, and El Niño-Southern Oscillation (ENSO) during the mid-Holocene period (6,000 years before present; 6 ka run). When the 6 ka run was compared to the control run (0 ka run), the reduced sea surface temperature (SST) and the reduced precipitation due to the basin-wide cooling, and the intensified cross-equatorial surface winds due to the hemispheric discrepancy of the surface cooling over the tropical Pacific were commonly observed in both the PMIP2 and PMIP3, but changes were more dominant in the PMIP3. The annual cycle of SST was weaker over the equatorial eastern Pacific, because of the orbital forcing change and the deepening mixed layer, while it was stronger over the equatorial western pacific in both the PMIP2 and PMIP3. The stronger annual cycle of the equatorial western Pacific SST was accompanied by the intensified annual cycle of the zonal surface wind, which dominated in the PMIP3 in particular. The ENSO activity in the 6 ka run was significantly suppressed in the PMIP2, but marginally reduced in the PMIP3. In general, the weakened air-sea coupling associated with basin-wide cooling, reduced precipitation, and a hemispheric contrast in the climate state led to the suppression of ENSO activity, and the weakening of the annual cycle over the tropical eastern Pacific might lead to the intensification of ENSO through the frequency entrainment. Therefore, the two opposite effects are slightly compensated for by each other, which results in a small reduction in the ENSO activity during the 6 ka in the PMIP3. On the whole, in PMIP2/PMIP3, the variability of canonical (or conventional) El Niño tends to be reduced during 6 ka, while that of CP/Modoki El Niño tends to be intensified.  相似文献   
153.
Abstract. The Yuryang gold deposit, comprising a Te‐bearing Au‐Ag vein mineralization, is located in the Cheonan area of the Republic of Korea. The deposit is hosted in Precambrian gneiss and closely related to pegmatite. The mineralized veins display massive quartz textures, with weak alteration adjacent to the veins. The ore mineralization is simple, with a low Ag/Au ratio of 1.5:1, due to the paucity of Ag‐phases. Ore mineralization took place in two different mineral assemblages with paragenetic time; early Fe‐sulfide mineralization and late Fe‐sulfide and Au‐Te mineralization. The early Fe‐sulfide mineralization (pyrite + sphalerite) occurred typically along the vein margins, and the subsequent Au‐Te mineralization is characterized by fracture fillings of galena, sphalerite, pyrrhotite, Te‐bearing minerals (petzite, altaite, hessite and Bi‐Te mineral) and electrum. Fluid inclusions characteristically contain CO2 and can be classified into four types (Ia, Ib, IIa and IIb) according to the phase behavior. The pressure corrected temperatures (≥500d?C) indicate that the deposit was formed at a distinctively high temperature from fluids with moderate to low salinity (<12 wt% equiv. NaCl) and CH4 (1?22 mole %). The sphalerite geo‐barometry yield an estimated pressure about 3.5 ?2.1 kbar. The dominant ore‐deposition mechanisms were CO2 effervescence and concomitant H2S volatilization, which triggered sulfidation and gold mineralization. The measured and calculated isotopic compositions of fluids (δ18OH2O = 10.3 to 12.4 %o; δDH2O = ‐52 to ‐77 %o) may indicate that the gold deposition originated from S‐type magmatic waters. The physicochemical conditions observed in the Yuryang gold deposit indicate that the Jurassic gold deposits in the Cheonan area, including the Yuryang gold deposit are compatible with deposition of the intrusion‐related Au‐Te veins from deeply sourced fluids generated by the late Jurassic Daebo magmatism.  相似文献   
154.
155.
The Taebaeksan Basin is located in the mid‐eastern part of the southern Korean Peninsula and tectonically belonged to the Sino‐Korean Craton (SKC). It comprises largely the lower Paleozoic Joseon Supergroup and the upper Paleozoic Pyeongan Supergroup which are separated by a disconformity representing a 140 myr?long hiatus. This paper explores the early Paleozoic paleogeographical and tectonic evolution of the Taebaeksan Basin on the basis of updated stratigraphy, trilobite faunal assemblages, and detrital zircon U–Pb ages of the Joseon Supergroup. The Joseon Supergroup is a shallow marine siliciclastic‐carbonate succession ranging in age from the Cambrian Series 2 to Middle Ordovician. The Ongnyeobong Formation is the sole Upper Ordovician volcanic succession documented in the Taebaeksan Basin. It is suggested that in the early Paleozoic the Taebaeksan Basin was a part of an epeiric sea, the Joseon Sea, in east Gondwana. The Joseon Sea was the depositional site for lower Paleozoic successions of the SKC. Early Paleozoic sedimentation in the Joseon Sea commenced during the Cambrian Stage 3 (~ 520 Ma) and ceased by the end of the Darriwilian (~ 460 Ma). In the early Paleozoic, the SKC was located at the margin of east Gondwana and was separated from the South China Craton by an oceanic basin with incipient oceanic ridges, the Helan Trough. The spreading oceanic ridges and associated transform faults possibly promoted the uplift of the Joseon Sea, which resulted in cessation of sedimentation and break‐up of the SKC from core Gondwana by the end of the Ordovician.  相似文献   
156.
Lee  Seokjae  Yang  Subin  Lee  Dongjoon  Choi  Hangseok  Won  Jongmuk 《Hydrogeology Journal》2023,31(5):1245-1257

Understanding contaminant transport in clay-containing soils is critical for accurate prediction of the travel distances of contaminants and for the design and implementation of corresponding remediation plans. This study examined the breakthrough behavior of methylene blue (MB) through sand-illite mixtures using laboratory soil-column experiments at five inlet concentrations, three flow rates, and five illite contents. Kinetic and equilibrium adsorption tests were performed to evaluate the maximum adsorption capacities of the sand and illite used in the soil-column experiments. In addition, the bed efficiency, MB saturation, and adsorption rate were calculated to quantitatively describe the observed breakthrough curves. The observed breakthrough curves, bed efficiencies, MB saturations, and adsorption rates in this study demonstrated the presence of a threshold illite content of ~10% for the adsorption efficiency of contaminants. This implies the need to evaluate the threshold clay content for accurate predictions of contaminant transport through gap-graded clay-containing soils.

  相似文献   
157.
158.
We have examined the relationships among coronal holes (CHs), corotating interaction regions (CIRs), and geomagnetic storms in the period 1996?–?2003. We have identified 123 CIRs with forward and reverse shock or wave features in ACE and Wind data and have linked them to coronal holes shown in National Solar Observatory/Kitt Peak (NSO/KP) daily He i 10?830 Å maps considering the Sun?–?Earth transit time of the solar wind with the observed wind speed. A sample of 107 CH?–?CIR pairs is thus identified. We have examined the magnetic polarity, location, and area of the CHs as well as their association with geomagnetic storms (Dst≤?50 nT). For all pairs, the magnetic polarity of the CHs is found to be consistent with the sunward (or earthward) direction of the interplanetary magnetic fields (IMFs), which confirms the linkage between the CHs and the CIRs in the sample. Our statistical analysis shows that (1) the mean longitude of the center of CHs is about 8°E, (2) 74% of the CHs are located between 30°S and 30°N (i.e., mostly in the equatorial regions), (3) 46% of the CIRs are associated with geomagnetic storms, (4) the area of geoeffective coronal holes is found to be larger than 0.12% of the solar hemisphere area, and (5) the maximum convective electric field E y in the solar wind is much more highly correlated with the Dst index than any other solar or interplanetary parameter. In addition, we found that there is also a semiannual variation of CIR-associated geomagnetic storms and discovered new tendencies as follows: For negative-polarity coronal holes, the percentage (59%; 16 out of 27 events) of CIRs associated with geomagnetic storms in the first half of the year is much larger than that (25%; 6 out of 24 events) in the second half of the year and the occurrence percentage (63%; 15 out of 24 events) of CIR-associated storms in the southern hemisphere is significantly larger than that (26%; 7 out of 27 events) in the northern hemisphere. Positive-polarity coronal holes exhibit an opposite tendency.  相似文献   
159.
Using simple dimensional arguments for both spiral and elliptical galaxies, we present formulae to derive an estimate of the halo spin parameter λ for any real galaxy, in terms of common observational parameters. This allows a rough estimate of λ, which we apply to a large volume-limited sample of galaxies taken from the Sloan Digital Sky Survey data base. The large numbers involved (11 597) allow the derivation of reliable λ distributions, as signal adds up significantly in spite of the errors in the inferences for particular galaxies. We find that if the observed distribution of λ is modelled with a lognormal function, as often done for this distribution in dark matter haloes that appear in cosmological simulations, we obtain parameters  λ0= 0.04 ± 0.005  and  σλ= 0.51 ± 0.05  , interestingly consistent with values derived from simulations. For spirals, we find a good correlation between empirical values of λ and visually assigned Hubble types, highlighting the potential of this physical parameter as an objective classification tool.  相似文献   
160.
In order to consider a counterplan to preserve an ancient royal tomb in Kongju, Korea, the deformation of the wall structure, the atmospheric temperature in the tomb, and the groundwater level have been monitored. The long-term measurement of biaxial tilting of the tomb walls revealed that the brick-built subsurface opening had been subjected to severe structural instability. The measured deformation of the tomb was consistent with the displacement of soil around the tomb calculated using a numerical analysis. The instability of the tomb structure is closely related to the rainy season as the deformations measured are several times that in the dry season. A sudden change of temperature inside the tomb exerted an influence on the deformation of the tomb structure as well. It is suggested that the excavation be restored for tourists, the quicklime layer for preventing groundwater infiltration is reinforced, and a constant temperature is kept inside the tomb. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号