首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2892篇
  免费   77篇
  国内免费   52篇
测绘学   289篇
大气科学   263篇
地球物理   533篇
地质学   1341篇
海洋学   132篇
天文学   356篇
综合类   48篇
自然地理   59篇
  2023年   18篇
  2022年   55篇
  2021年   63篇
  2020年   63篇
  2019年   66篇
  2018年   260篇
  2017年   245篇
  2016年   226篇
  2015年   134篇
  2014年   202篇
  2013年   262篇
  2012年   161篇
  2011年   157篇
  2010年   142篇
  2009年   139篇
  2008年   122篇
  2007年   81篇
  2006年   72篇
  2005年   47篇
  2004年   39篇
  2003年   31篇
  2002年   23篇
  2001年   19篇
  2000年   27篇
  1999年   22篇
  1998年   15篇
  1997年   18篇
  1996年   10篇
  1995年   9篇
  1994年   19篇
  1993年   14篇
  1992年   8篇
  1991年   23篇
  1990年   18篇
  1989年   15篇
  1988年   11篇
  1987年   19篇
  1986年   17篇
  1985年   15篇
  1984年   12篇
  1981年   8篇
  1980年   8篇
  1979年   10篇
  1976年   7篇
  1975年   9篇
  1974年   13篇
  1973年   8篇
  1972年   9篇
  1971年   6篇
  1969年   7篇
排序方式: 共有3021条查询结果,搜索用时 31 毫秒
291.
This paper investigates surface elevation changes that occurred during 1996–2004 in the Jharia coalfield through the digital elevation model (DEM) generated using synthetic aperture radar interferometry (InSAR) using ERS-1/2 (European Remote Sensing Satellite) tandem and RADARSAT-1 data. The comparison of elevation values derived from the InSAR DEM and topographic height data shows a bias of 23.08 m with root-mean-square error of ±2.31 m (5.8 %). The accuracy of the DEM was investigated by comparing the elevation profiles with the digitized elevation contour data at four different locations. The profile comparison shows a mean bias of 22.68 m. Local topography shows changes in elevation up to ±40.00 m due to mining activities on the 8-year time period. The results of InSAR-derived heights and topographic heights were comparable and well-matched except at a few locations where topographic data were unavailable. DEM generated using InSAR due to its high spatial details is ideal for the detection and estimation of surface elevation changes in mining areas.  相似文献   
292.
Nonlinear kinetic analysis of phenol adsorption onto peat soil   总被引:1,自引:0,他引:1  
Phenolic compounds are considered as a serious organic pollutant containing in many industrial effluents particularly vulnerable when the plant discharge is disposed on land. In the present study, the phenol removal potential of peat soil as adsorption media was investigated as the adsorption process are gaining popular for polishing treatment of toxic materials in industrial wastewater. Batch experiments were performed in the laboratory to determine the adsorption isotherms of initial concentrations for 5, 8, 10, 15, and 20 mg/L and predetermined quantity of peat soil with size ranges between 425 and 200 μm poured into different containers. The effects of various parameters like initial phenol concentration, adsorbent quantity, pH, and contact time were also investigated. From experimental results, it was found that 42 % of phenol removal took place with optimized initial phenol concentration of 10 mg/L, adsorbent dose of 200 g/L, solution pH 6.0 for the equilibrium contact time of 6 h. The result exhibits that pseudo-first-order (R 2 = 0.99) and Langmuir isotherm models are fitted reasonably (R 2 = 0.91). Adams–Bohart, Thomas, Yoon–Nelson, and Wolborska models were also investigated to the column experimental data of different bed heights to predict the breakthrough curves and to determine the kinetic coefficient of the models using nonlinear regression analysis. It was found that the Thomas model is the best fitted model to predict the experimental breakthrough curves with the highest coefficient of determination, R 2 = 0.99 and lowest root mean square error and mean absolute performance error values.  相似文献   
293.
Dynamics of heavy metals in the surface sediments of Mahanadi river estuarine system were studied for three different seasons. This study demonstrates that the relative abundance of these metals follows in the order of Fe > Mn > Zn > Pb > Cr > Ni ≥ Co > Cu > Cd. The spatial pattern of heavy metals supported by enrichment ratio data, suggests their anthropogenic sources possibly from various industrial wastes and municipal wastes as well as agricultural runoff. The metal concentrations in estuarine sediments are relatively higher than in the river due to adsorption/accumulation of metals on sediments during saline mixing, while there is a decreasing trend of heavy metal concentrations towards the marine side. The temporal variations for metals, such as Fe, Mn, Zn, Ni and Pb exhibit higher values during monsoon season, which are related to agricultural runoff. Higher elemental concentrations are observed during pre-monsoon season for these above metals (except Ni) at the polluted stations and for metals, such as Cr, Co and Cd at all sites, which demonstrate the intensity of anthropogenic contribution. R-mode factor analysis reveals that “Fe–Mn oxy hydroxide”, “organic matter”, “CaCO3”, and “textural variables” factors are the major controlling geochemical factors for the enrichment of heavy metals in river estuarine sediment and their seasonal variations, though their intensities were different for different seasons. The relationships among the stations are highlighted by cluster analysis, represented in dendrograms to categorize different contributing sites for the enrichment of heavy metals in the river estuarine system.  相似文献   
294.
A study was conducted to understand the hydrogeological processes dominating in the North 24 Parganas and South 24 Parganas based on representative 39 groundwater samples collected from selected area. The abundance of major ions was in the order of Ca2+ > Na+ > Mg2+ > K+ > Fe2+ for cations and HCO3 ? > PO4 3? > Cl? > SO4 2? > NO3 ? for anions. Piper trilinear diagram was plotted to understand the hydrochemical facies. Most of the samples are of Ca-HCO3 type. Based on conventional graphical plots for (Ca + Mg) vs. (SO4 + HCO3) and (Na + K) vs. Cl, it is interpreted that silicate weathering and ion exchange are the dominant processes within the study area. Previous studies have reported quartz, feldspar, illite, and chlorite clay minerals as the major mineral components obtained by the XRD analysis of sediments. Mineralogical investigations by SEM and EDX of aquifer materials have shown the occurrence of arsenic as coating on mineral grains in the silty clay as well as in the sandy layers. Excessive withdrawal of groundwater for irrigation and drinking purposes is responsible for fluctuation of the water table in the West Bengal. Aeration beneath the ground surface caused by fluctuation of the water table may lead to the formation of carbonic acid. Carbonic acid is responsible for the weathering of silicate minerals, and due to the formation of clay as a product of weathering, ion exchange also dominates in the area. These hydrogeological processes may be responsible for the release of arsenic into the groundwater of the study area, which is a part of North 24 Parganas and South 24 Parganas.  相似文献   
295.
The ability of ochre to remove Pb(II) and Cu(II) from aqueous media has been studied by batch sorption studies varying the contact time, initial metal concentration, initial solution pH and temperature to understand the adsorption behaviour of these metals through adsorption kinetics and isotherms. The pH of the solution and the temperature controlled the adsorption of metal ions by ochre and rapid uptake occurred in the first 30 min of reaction. The kinetics of adsorption followed a pseudo-second-order rate equation (R 2 > 0.99) and the isotherms are well described by the Freundlich model. Adsorption of metals onto ochre is endothermic in nature. Between the two metals, Pb(II) showed more preference towards the exchangeable sites on ochre than Cu(II). This study indicates that ochre is a very effective adsorbent in removing Pb(II) and Cu(II) from the aqueous environment with an adsorptive capacity of 0.996 and 0.628 mg g?1 and removal efficiency of 99.68 and 62.80 %, respectively.  相似文献   
296.
Mangrove forests are one of the most productive and biodiverse wetlands on earth. Yet, these unique coastal tropical forests are among the most threatened habitats in the world. Muthupet mangroves situated in the southeastern coast of India, has a reverse “L” shaped structure. Four cores were collected in 2008, sliced and subsampled at 2.5 cm length. The heavy metals (Mn, Cu, Zn, Ni, Pb, Cr, Cd) and other associated geochemical parameters were evaluated to determine pollution history of Muthupet. An evaluation of the status of heavy metal pollution through the index analysis approach was attempted by computing geoaccumulation index, anthropogenic factor, enrichment factor, contamination factor and degree of contamination, pollution load index and metal pollution index. To compensate for the natural variability of heavy metals in the core sediments, normalization using Al was carried out so that, any anthropogenic metal contributions may be detected and quantified. Results of the study reveal that significant metal contamination exists, and all the metals are found to be higher than continental crustal values. The fine sediments of Muthupet vary between uncontaminated and moderately contaminated with almost no enrichment (EF < 1) to severe enrichment (EF > 10). On comparison, the core collected close to aquafarms and dense mangrove forest (C3) is the most polluted core and the core retrieved where minor rivers drain (C2) is the least polluted.  相似文献   
297.
Environmental characteristics of the coral reef-seagrass ecosystem of selected Lakshadweep Islands (India) were assessed with a view to understanding the future climate change scenario in the region. Images obtained from the Indian remote sensing satellite (IRS P6) were used to identify the different zones such as the corals, the seagrass and the sandy region. The pH (7.6–8.6) of sediment was relatively high in the coral reef compared to the seagrass area, possibly indicating a climate shift-induced coral bleaching. The water quality and sediment texture generally showed marked intra- and inter-island variations illustrating that these coral reef ecosystems are highly vulnerable to climate change brought about by increased human interventions. Future research should therefore explore the habitat and resource connections, to predict their restoring capabilities for a sustainable exploitation. With an alarming increase in the population and associated developmental activities, the island ecosystems are expected to respond severely to the climate change, which may eventually lead to mass mortality of corals due to bleaching.  相似文献   
298.
299.
Randomly distributed ground magnetic data sets, collected along parallel and closely spaced profiles, in small blocks, the blocks being separated/distributed widely over a large area, become, sometimes, unamenable for deriving a meaningful geological model. In such a situation, an approach of “Cumulative Total Intensity Magnetic Anomaly Field (CTIMAF)” has been devised to interpret the sparsely distributed magnetic data sets. A case history has been presented from the lead–zinc mineralized provenance of Ajabgarh Formation of Delhi Fold Belt in the northern part of Ajmer Town. Log-normalized radially averaged power spectrum was computed for the Cumulative Total Intensity Magnetic Anomaly data and depth to the basement is derived. The computed depth of 4.5 km is in good agreement with the Deep Seismic Studies.  相似文献   
300.
An attempt has been made to evaluate the water quality in the fast-growing coastal area of South Chennai. Groundwater samples were collected from selected locations and analyzed for major physico-chemical parameters. Experimental results show that the water has alkaline with pH varying from 7.2 to 8.2. Concentrations of Na and Cl were positively correlated with EC and elevated levels of these parameters near the coastal region, especially in the northern end of the study area, indicating the influence of seawater intrusion. Piper diagram identified Na–Cl as the dominant type of water in most of the samples. The presence of Ca–Cl facies in the groundwater suggests the possible ion exchange (Na with Ca) reaction in the aquifer. Molar ratios of Cl/HCO3 and Mg/Ca showed a higher value (>1) in many samples, which confirmed the influence of seawater intrusion on water quality. The Water Quality Index (WQI) of the study area ranged between 8 and 116, the highest recorded being at Thiruvanmiyur and the lowest at Muttukkadu. However, total hardness values show that 64% of the samples were hard or very hard in nature. The results of SAR, Na%, and PI show that majority of the samples are suitable for irrigation purposes. A comparison of spatial distribution maps of water quality parameters with those of WQI shows that groundwater quality has highly deteriorated in the Thiruvanmiyur region, located on the northeast part of the study area. Good-quality water is found at the southeast part of the study area, namely, Muttukkadu. This study indicates that urbanization and seawater intrusion have heavily affected the groundwater quality of South Chennai coastal area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号