A long-term (1948 to 2012) trend of precipitation (annual, pre-monsoon, monsoon, and post-monsoon seasons) in Bangladesh was analyzed in different regions using both parametric and nonparametric approaches. Moreover, the possible teleconnections of precipitation (annual and monsoon) variability with El Niño/Southern Oscillation (ENSO) episode and Indian Ocean Dipole (IOD) were investigated using both average and individual (both positive and negative) values of ENSO index and IOD. Our findings suggested that for annual precipitation, a significant increasing monotonic trend was found in whole Bangladesh (4.87 mm/year), its western region (5.82 mm/year) including Rangpur (9.41 mm/year) and Khulna (4.95 mm/year), and Sylhet (10.12 mm/year) and Barisal (6.94 mm/year) from eastern region. In pre-monsoon, only Rangpur (2.88 mm/year) showed significant increasing trend, while in monsoon, whole Bangladesh (3.04 mm/year), Sylhet (7.17 mm/year), and Barisal (6.94 mm/year) showed similar trend. In post-monsoon, there was no significant trend. Our results also revealed that the precipitation (annual or monsoon) of whole Bangladesh and almost all of the spatial regions did not show any significant correlation with ENSO events, whereas the average IOD values showed significant correlation only in monsoon precipitation of western region. The individual positive IODs showed significant correlation in whole Bangladesh, western region, and its two divisions (Rajshahi and Khulna). So, in the context of Bangladesh climate, IOD has the more teleconnection to precipitation than that of ENSO. Our findings indicate that the co-occurrence of ENSO and IOD events may suppress their influence on each other.
Farakka Barrage Project (FBP) constructed in 1975 on the river Ganga in West Bengal, India has largely altered hydro-geomorphic processes inducing a different kind of impetus in channel dynamics especially channel oscillation of the Bhagirathi river. Controlled hydro-geomorphological regime drastically altering natural regime has significantly influenced channel process with resultant change in channel geometry. Geospatial analysis using topographical maps of 1927, 1954 and 1974 along with satellite images of 1990, 2004, and 2014 clearly portrays rapidity in channel evolution in the post-Farakka period which is explicitly proved from four meander cut-offs after 1975. The meander geometry analysis of 66 loops of lower Bhagirathi river during 1927–2014 in terms of four basic parameters (radius of curvature, wavelength, amplitude, and channel length) and four indices (sinuosity index, radius–wavelength ratio, meander shape index and meander form index) depicts telltale pattern of channel straightening with increased number of wide and open loops after the construction of barrage. The average sinuosity of the loops has increased from 2.27 in 1927 to 2.35 in 1974 and dwindles to 1.80 in 2014. This distinct outcome induced by FBP is also found for other indices explained with special reference new hydraulic regime in post-Farakka period. 相似文献
Households’ links with local Government provide important support for disaster resilience and recovery on the Bangladeshi coast. Few previous studies of disaster resilience and recovery have explored how linking social networks—and in particular local government—contribute. Using household surveys, focus groups, and key informant interviews, we examine strengths and weaknesses of local government’s contribution, using two cyclone-affected coastal villages as case studies. The findings show that local government provides important support, for example relief distribution, livelihood assistance, and reconstruction of major community services. However, patronage relationships (notably favouring political supporters) and bribery play a substantial role in how those responsibilities are discharged. The equity and efficiency of these contributions to recovery are markedly diminished by corruption. Reducing corruption in UP’s contributions to disaster recovery could significantly improve resilience; however, general reform of governance in Bangladesh would needed to bring this about. 相似文献
Bangladesh is situated in a subtropical to tropical climatic zone. A recently weathered crust has developed on sedimentary bedrock (sandstone, siltstone, shale and claystones) of Tertiary–Quaternary age. Weathered samples were collected from 16 sections totaling 68 samples and were analyzed mineralogically. The main primary minerals identified in the weathered crust of sedimentary rocks are quartz, plagioclase, K-feldspar, biotite, muscovite, sparse carbonate and epidote. The secondary minerals are kaolinite, illite, chlorite, gibbsite and goethite. Weathering initiated along the grain boundaries and cleavage planes of the minerals, forming small cloudy materials which were very difficult to identify. In the advanced stage of weathering, these cloudy materials have turned into secondary minerals. In region 1, high rain fall (7100 mm/yr) and monsoonic climate resulted in a kaolinite–gibbsite–goethite suite through the weathering of feldspars and biotite. The occurrence of gibbsite in the relatively elevated lands of Sylhet and Fe-kaolinite throughout the study areas is indicative of a humid–tropical climate during formation of the weathered crust. 相似文献
The main aims of the present study are to identify the major factors affecting hydrogeochemistry of groundwater resources in the Marand plain, NW Iran and to evaluate the potential sources of major and trace elements using multivariate statistical analysis such as hierarchical clustering analysis (HCA) and factor analysis (FA). To achieve these goals, groundwater samples were collected in three sampling periods in September 2013, May 2014 and September 2014 and analyzed with regard to ions (e.g., Ca2+, Mg2+, Na+ and K+, HCO3?, SO42?, Cl?, F? and NO3?) and trace metals (e.g., Cr, Pb, Cd, Mn, Fe, Al and As). The piper diagrams show that the majority of samples belong to Na–Cl water type and are followed by Ca–HCO3 and mixed Ca–Na–HCO3. Cross-plots show that weathering and dissolution of different rocks and minerals, ion exchange, reverse ion exchange and anthropogenic activities, especially agricultural activities, influence the hydrogeochemistry of the study area. The results of the FA demonstrate that 6 factors with 81.7% of total variance are effective in the overall hydrogeochemistry, which are attributed to geogenic and anthropogenic impacts. The HCA categorizes the samples into two clusters. Samples of cluster C1, which appear to have higher values of some trace metals like Pb and As, are spatially located at the eastern and central parts of the plain, while samples of cluster C2, which express the salinization of the groundwater, are situated mainly westward with few local exceptions. 相似文献
In the present work,we study the time evolution,significance of the N-S asymmetry excesses presented as a function of the solar cycle and prominent rotational p... 相似文献
The present study has been a pioneering effort examining the role of an annual flood as a potent stimulus inducing changes in channel geomorphology of the Mayurakshi River, India. Twenty cross sections have been considered for the measurement of various hydro-geomorphic attributes of the river in both the pre- and post-flood conditions in 2018. The study sensed an escalating trend for channel width, width/depth ratio, and wetted perimeter while the reverse was also detected for average depth, maximum depth, cross-sectional area, and hydraulic radius. For example, the width/depth ratio recorded an increase of?~?11%, and the hydraulic radius depicted a decrease of?~?8%. Furthermore, channel asymmetry, bed asymmetry and bed relief index experienced a decrease after the flood. The sudden hydraulic impulse during monsoon flood as manifested in velocity, discharge, specific stream power, Reynolds number, Froude number increases the erosivity of the fluid. Besides the hydraulic factors, bank material (massive sandbank susceptible to hydraulic action and mixed bank constituted by alternate bands of sand and silt, and vulnerable to failure by piping action) brings substantial changes in channel morphology. Moreover, anthropogenic interventions such as sand mining are found to play a significant role in channel behaviour. The role of the multiple factors driving the morphological changes of the cross sections has been unpacked using canonical component analysis.
We present a perturbation theory for studying the instabilities of non-axisymmetric gaseous discs. We perturb the dynamical equations of self-gravitating fluids in the vicinity of a non-axisymmetric equilibrium, and expand the perturbed physical quantities in terms of a complete basis set and a small non-axisymmetry parameter ε. We then derive a linear eigenvalue problem in matrix form, and determine the pattern speed, growth rate and mode shapes of the first three unstable modes. In non-axisymmetric discs, the amplitude and the phase angle of travelling waves are functions of both the radius R and the azimuthal angle φ. This is due to the interaction of different wave components in the response spectrum. We demonstrate that wave interaction in unstable discs, with small initial asymmetries, can develop dense clumps during the phase of exponential growth. Local clumps, which occur on the major spiral arms, can constitute seeds of gas giant planets in accretion discs. 相似文献