首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   13篇
  国内免费   4篇
测绘学   10篇
大气科学   24篇
地球物理   48篇
地质学   142篇
海洋学   9篇
天文学   27篇
综合类   6篇
自然地理   6篇
  2023年   3篇
  2022年   13篇
  2021年   15篇
  2020年   8篇
  2019年   9篇
  2018年   18篇
  2017年   21篇
  2016年   24篇
  2015年   18篇
  2014年   17篇
  2013年   35篇
  2012年   9篇
  2011年   8篇
  2010年   6篇
  2009年   14篇
  2008年   8篇
  2007年   1篇
  2006年   8篇
  2005年   2篇
  2004年   8篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
排序方式: 共有272条查询结果,搜索用时 62 毫秒
51.
The Nidar ophiolite complex is exposed within the Indus suture zone in eastern Ladakh, India. The suture zone is considered to represent remnant Neo-Tethyan Ocean that closed via subduction as the Indian plate moved northward with respect to the Asian plate. The two plates ultimately collided during the Middle Eocene. The Nidar ophiolite complex comprises a sequence of ultra-mafic rocks at the base, gabbroic rocks in the middle and volcano-sedimentary assemblage on the top. Earlier studies considered the Nidar ophiolite complex to represent an oceanic floor sequence based on lithological assemblage. However, present study, based on new mineral and whole rock geochemical and isotopic data (on bulk rocks and mineral separates) indicate their generation and emplacement in an intra-oceanic subduction environment. The plutonic and volcanic rocks have nearly flat to slightly depleted rare earth element (REE) patterns. The gabbroic rocks, in particular, show strong positive Sr and Eu anomalies in their REE and spidergram patterns, probably indicating plagioclase accumulation. Depletion in high field strength elements (HFSE) in the spidergram patterns may be related to stabilization of phases retaining the HFSE in the subducting slab and / or fractional crystallization of titano-magnetite phases. The high radiogenic Nd- and low radiogenic Sr-isotopic ratios for these rocks exclude any influence of continental material in their genesis, implying an intra-oceanic environment.

Nine point mineral–whole rock Sm–Nd isochron corresponds to an age of 140 ± 32 Ma with an initial 143Nd/144Nd of 0.513835 ± 0.000053 (ENd t = + 7.4). This age is consistent with the precise Early Cretaceous age of Hauterivian (132 ± 2 to 127 ± 1.6 Ma) to Aptian (121 ± 1.4 to 112 ±1.1 Ma) for the overlying volcano-sedimentary (radiolarian bearing chert) sequences based on well-preserved radiolarian fossils (Kojima, S., Ahmad, T., Tanaka, T., Bagati, T.N., Mishra, M., Kumar, R. Islam, R., Khanna, P.P., 2001. Early Cretaceous radiolarians from the Indus suture zone, Ladakh, northern India. In: News of Osaka Micropaleontologists (NOM), Spec. Vol., 12, 257–270.) and cooling ages of 110–130 Ma based on 39Ar/40Ar for Nidar–Spontang ophiolitic rocks (Mahéo, G., Berttrand, H., Guillot, S., Villa, I. M., Keller, F., Capiez, P., 2004. The South Ladakh Ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implications for the closure of the Neo-Tethys. Chem. Geol., 203, 273–303.). As these gabbroic and volcanic rocks are interpreted to be arc related, the new Sm–Nd age data may indicate that intra-ocean subduction in the Neo-Tethyan ocean may have started much before  140 ± 32 Ma as this date is interpreted as the age of crystallization of the arc magma. Present and published age data on the arc magmatic rocks from the Indus suture zone may collectively indicate episodic magmatism with increasing maturity of the arc from more basic (during ~ 140 ± 32 Ma) when the arc was immature through intermediate (andesitic/granodioritic) at ~ 100 Ma to more felsic (rhyolitic/dioritic) magmatism at ~ 50–45 Ma, when the Indian and the Asian plates collided.  相似文献   

52.
Meso-scale characteristics of disturbances that bring about atmospheric disasters in pre- and mature monsoon seasons in Bangladesh are analyzed. Several types of meteorological instruments capable of observations with high temporal and spatial resolutions were introduced for the first time in this area to capture the meso-scale structure of rainfall systems. We installed an automatic weather station (AWS) and several automatic raingauges (ARGs) and utilized the weather radar of Bangladesh Meteorological Department (BMD). From the radar image in the summer of 2001 (16–18 July), a striking feature of the systematic diurnal variation in this area was elucidated. In these 3 days, the diurnal evolutions of convective activity were remarkably similar to each other, implying that this pattern can be understood as a typical response of local cloud systems to the diurnal variation of insolation under some summer monsoon situations. The ARG data show the difference in characteristics of rainfall between pre- and mature monsoon seasons. The short intense downpour tends to occur more frequently in the pre-monsoon season than in the mature monsoon season. The pre-monsoon rainfall also has clear diurnal variation with a peak that is more strongly concentrated in time. In the northern part the rainfall peak is found in between midnight and early morning, while it is observed in the daytime in central to western parts of the country. Two disaster cases caused by meso-scale disturbances are analyzed. Although they occurred in the same season, the structures of the cloud systems were largely different from each other. The disturbance brought about tornadoes on 14 April 2004, consisting of many spherical cloud systems of approximately 20 km size. On the other hand, another one that caused the tragic river water transport accident on 23 May 2004 had meso-scale rain band structure. The latter case was captured by the AWS located at Dhaka. Sudden changes in temperature, wind and pressure were observed clearly, showing the typical structure of convective rain bands.  相似文献   
53.
54.

A long-term (1948 to 2012) trend of precipitation (annual, pre-monsoon, monsoon, and post-monsoon seasons) in Bangladesh was analyzed in different regions using both parametric and nonparametric approaches. Moreover, the possible teleconnections of precipitation (annual and monsoon) variability with El Niño/Southern Oscillation (ENSO) episode and Indian Ocean Dipole (IOD) were investigated using both average and individual (both positive and negative) values of ENSO index and IOD. Our findings suggested that for annual precipitation, a significant increasing monotonic trend was found in whole Bangladesh (4.87 mm/year), its western region (5.82 mm/year) including Rangpur (9.41 mm/year) and Khulna (4.95 mm/year), and Sylhet (10.12 mm/year) and Barisal (6.94 mm/year) from eastern region. In pre-monsoon, only Rangpur (2.88 mm/year) showed significant increasing trend, while in monsoon, whole Bangladesh (3.04 mm/year), Sylhet (7.17 mm/year), and Barisal (6.94 mm/year) showed similar trend. In post-monsoon, there was no significant trend. Our results also revealed that the precipitation (annual or monsoon) of whole Bangladesh and almost all of the spatial regions did not show any significant correlation with ENSO events, whereas the average IOD values showed significant correlation only in monsoon precipitation of western region. The individual positive IODs showed significant correlation in whole Bangladesh, western region, and its two divisions (Rajshahi and Khulna). So, in the context of Bangladesh climate, IOD has the more teleconnection to precipitation than that of ENSO. Our findings indicate that the co-occurrence of ENSO and IOD events may suppress their influence on each other.

  相似文献   
55.
56.
57.
58.
Islam  Aznarul  Sarkar  Biplab  Saha  Ujwal Deep  Islam  Mainul  Ghosh  Susmita 《Natural Hazards》2022,111(1):1019-1046

The present study has been a pioneering effort examining the role of an annual flood as a potent stimulus inducing changes in channel geomorphology of the Mayurakshi River, India. Twenty cross sections have been considered for the measurement of various hydro-geomorphic attributes of the river in both the pre- and post-flood conditions in 2018. The study sensed an escalating trend for channel width, width/depth ratio, and wetted perimeter while the reverse was also detected for average depth, maximum depth, cross-sectional area, and hydraulic radius. For example, the width/depth ratio recorded an increase of?~?11%, and the hydraulic radius depicted a decrease of?~?8%. Furthermore, channel asymmetry, bed asymmetry and bed relief index experienced a decrease after the flood. The sudden hydraulic impulse during monsoon flood as manifested in velocity, discharge, specific stream power, Reynolds number, Froude number increases the erosivity of the fluid. Besides the hydraulic factors, bank material (massive sandbank susceptible to hydraulic action and mixed bank constituted by alternate bands of sand and silt, and vulnerable to failure by piping action) brings substantial changes in channel morphology. Moreover, anthropogenic interventions such as sand mining are found to play a significant role in channel behaviour. The role of the multiple factors driving the morphological changes of the cross sections has been unpacked using canonical component analysis.

  相似文献   
59.
Natural Hazards - Understanding household disaster risk perception is crucial to formulate and apply disaster risk reduction strategies. Using survey data from 300 households from three highly...  相似文献   
60.
Geotechnical and Geological Engineering - Reliable prediction of surface and subsurface settlements induced by shallow tunnels is important to minimize the adverse effects which may take...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号