首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
  国内免费   1篇
测绘学   4篇
地球物理   4篇
地质学   28篇
海洋学   1篇
天文学   5篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   6篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有42条查询结果,搜索用时 484 毫秒
31.
32.
The Bathonian ammonite assemblages have been previously poorly recorded in Kutch. The present study has unearthed a rich array of ammonite taxa ranging from the Middle to Upper Bathonian. While Oxycerites Rollier (1909) is a new record from Kutch, the oldest occurrence of Choffatia Siemiradzki (1898) has been found from the Middle Bathonian horizon. Oxycerites cf. orbis (Giebel) is a zonal index of the Late Bathonian in other areas and thus facilitates interprovincial correlation. Besides, palaeobiogeographic and stratigraphic distribution of many species have been modified based on new information. For example, macrocephalitin species, i.e., Kamptokephalites cf. etheridgei Spath (1928), Macrocephalites bifurcatus transient intermedius Spath (1928), M. cf. mantataranus Boehm (1912) were previously known from West Pacific, Indonesia have been now found in Kutch. Gracilisphinctes Buckman (1920) has been previously known to occur during the Middle Bathonian time, the present work extends its stratigraphic distribution up to the definite Upper Bathonian horizon. Procerites hians (Waagen) an endemic species in Kutch previously known from the Upper Bathonian beds, its stratigraphic range has been extended down to the Middle Bathonian.Detail taxonomy of the newly obtained taxa has been done and in many cases sexual dimorphism has been recognized.  相似文献   
33.
The lakes of the Himalaya are degrading due to increase in toxic heavy metal loading. This study reports the last 50-year heavy metal pollution loading in the Rewalsar Lake, Himachal Pradesh, India. Sediment cores were recovered to study the pollution loading in the lake sediments. The 137Cs and 210Pb isotope-based sedimentation rate suggest rapid sedimentation in the lake during the last ~50 years. The concentrations of Mn, Cu, Zn, Cd, Pb, Co, Ni, Cr metals in the lake sediments owe its contributions both to the natural and anthropogenic sources. Prior to ca 1990 AD, metal loading was dominated by the lithogenic input, whereas post ca 1990 AD the metal loading was controlled by the anthropogenic factors. The Pb concentration in the lake gradually increased during 1990–2004 and then decreased significantly till present. The higher concentration of Pb seems to be derived from the fossil fuel burning, while the Cr concentration in the lake indicates the use of fertilizer in the catchment area. The lowest concentrations of elements around ca 1990 AD seem to have occurred due to channelization of the lake feeding system.  相似文献   
34.
This paper evaluates the potential use of a fine-grained soil obtained from a site in West Bengal, India, as a suitable landfill liner material for the containment of hexavalent chromium from tanning waste sludge. The physico-chemical properties of the soil were determined. The soil adsorption affinity for hexavalent chromium was also assessed through adsorption batch and breakthrough column tests. The zero point charge (pHzpc) of the soil was found to be 7.3. The batch kinetics and column tests results indicated that the soil liner possesses a relatively good hexavalent chromium adsorption capacity at natural or slightly alkaline condition. The adsorption results showed that the hexavalent chromium uptake by the soil follows both Langmuir and Freundlich adsorption isotherms. This study also illustrated that the hexavalent chromium breakthrough curve in the column experiment reached equilibrium concentration after 3.5 pore volumes (900 h). Overall, this study showed that the fine-grained soil has the potential for usage as a landfill liner or as a component of a landfill barrier system to prevent chromium contamination from the tannery waste disposal.  相似文献   
35.
Phulad Shear Zone (PSZ) of Delhi Fold Belt in Rajasthan is a northeasterly striking ductile shear zone with a well developed mylonitic foliation (035/70E) and a downdip stretching lineation. The deformation in the PSZ has developed in a transpressional regime with thrusting sense of movement. The northeastern unit, i.e., the hanging wall contains a variety of rocks namely calc-silicates, pelites and amphibolites and the southwestern unit, i.e., the footwall unit contains only granitic rocks. Systematic investigation of the granites of the southwestern unit indicate a gradual change in the intensity of deformation from a distance of about 1 km west of the shear zone to the shear zone proper. The granite changes from weakly deformed granite to a mylonite/ultramylonite as we proceed towards the PSZ. The weakly deformed granite shows a crude foliation with the same attitude of mylonitic foliation of the PSZ. Microscopic study reveals the incipient development of C and S fabric with angle between C and S varying from 15 ° to 24 °. The small angle between the C and S fabric in the least deformed granite variety indicates that the deformation has strong pure shear component. At a distance of about 1 m away from the PSZ, there is abrupt change in the intensity of deformation. The granite becomes intensely foliated with a strong downdip lineation and the rock becomes a true mylonite. In mesoscopic scale, the granite shows stretched porphyroclasts in both XZ and YZ sections indicating a flattening type of deformation. The angle between the C and S fabric is further reduced and finally becomes nearly parallel. In most places, S fabric is gradually replaced by C fabric. Calculation of sectional kinematic vorticity number ( Wn) from the protomylonitic and mylonite/ultramylonite granites varies from 0.3 ± 0.03 to 0.55 ± 0.04 indicating a strong component of pure shear. The similarity of the geometry of structures in the PSZ and the granites demonstrates that the deformation of the two units is broadly synchronous and the deformation in both the units is transpressional.  相似文献   
36.
Ocean Science Journal - The new puffer fish species Chelonodontops bengalensis (Pisces: Tetraodontidae) is described from two specimens collected on the southwest coast of the Bay of Bengal,...  相似文献   
37.
38.
A long mining history and unscientific exploitation of Jharia coalfield caused many environmental problems including water resource depletion and contamination. A geochemical study of mine water in the Jharia coalfield has been undertaken to assess its quality and suitability for domestic, industrial and irrigation uses. For this purpose, 92 mine water samples collected from different mining areas of Jharia coalfield were analysed for pH, electrical conductivity (EC), major cations (Ca2+, Mg2+, Na+, K+), anions (F, Cl, HCO3 , SO4 2−, NO3 ), dissolved silica (H4SiO4) and trace metals. The pH of the analysed mine water samples varied from 6.2 to 8.6, indicating mildly acidic to alkaline nature. Concentration of TDS varied from 437 to 1,593 mg L−1 and spatial differences in TDS values reflect the variation in lithology, surface activities and hydrological regime prevailing in the region. SO4 2− and HCO3 are dominant in the anion and Mg2+ and Ca2+ in the cation chemistry of mine water. High concentrations of SO4 2− in the mine water of the area are attributed to the oxidative weathering of pyrites. Ca–Mg–SO4 and Ca–Mg–HCO3 are the dominant hydrochemical facies. The drinking water quality assessment indicates that number of mine water samples have high TDS, total hardness and SO4 2− concentrations and needs treatment before its utilization. Concentrations of some trace metals (Fe, Mn, Ni, Pb) were also found to be above the desirable levels recommended for drinking water. The mine water is good to permissible quality and suitable for irrigation in most cases. However, higher salinity, residual sodium carbonate and Mg-ratio restrict its suitability for irrigation at some sites.  相似文献   
39.
The progressive deformation of the Singhbhum Shear Zone (SSZ) involved the initiation of a mylonitic foliation, its deformation by three generations of reclined folds and superposition of two later groups of folds, i.e., a group of asymmetric folds with subhorizontal or gently plunging axes and a group of gentle and open, transverse and more or less upright folds. The occurrence of sheath folds and U-shaped deformed lineations indicate that the reclined folds were produced by rotation of fold hinges through large angles. The total displacement along the SSZ was compounded of displacements along numerous mesoscopic shear zones. The cleavages in the shear lenses and the mesoscopic shear zones cannot be distinguished as C and S surfaces. They have the same kinematic significance and were produced by ductile deformation, although there were localized discontinuous displacements along both sets,-of cleavages. A mylonitic foliation had formed before the development of the earliest recognizable folds. Its time of formation and folding could be synchronous, diachronous or partly overlapping in time in the different domains of the SSZ.  相似文献   
40.
Drag patterns of foliation are graphically constructed around very competent dykes under bulk strain of pure shear, simple shear and a combination of pure shear and simple shear. Four different types of drag patterns may be produced, depending on the nature of the bulk deformation and the initial orientations of the dyke and the foliation. The drag pattern can be symmetric or asymmetric, inward curving or outward curving. Both the magnitude and the sense of drag may vary along a dyke wall. A uniform sense of drag develops all along a dyke wall only in certain special situations. The type of foliation drag near a dyke may give us a rough idea of the nature of bulk deformation and the relative orientations of the dyke and the foliation with respect to the bulk strain axes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号