首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地质学   8篇
天文学   6篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
11.
In experiments that were regularly carried out in 1999–2002 with Pushchino radio telescopes (Russian Academy of Sciences), the study of the radial dependence of the scattering of radio emission from compact natural sources was extended to regions of circumsolar plasma farther from the Sun. Based on a large body of data, we show that, apart from the standard transonic acceleration region located at distances of 10–40 R from the Sun, there is a region of repeated acceleration at distances of 34–60 R attributable to the equality between the solar wind velocity and the Alfvénic velocity. The repetition in the trans-Alfvénic region of the characteristic features of the radial stream structure observed in the transonic region (the existence of a precursor, a narrow region of reduced scattering that precedes a wide region of enhanced scattering) suggests that the main characteristic features of the resonant acceleration of solar wind streams are preserved up to distances of the order of 60 R.  相似文献   
12.
The search for compact components of strong ($${{S}_{{{\text{int}}}}} \geqslant 5$$ Jy at 102.5 MHz) discrete radio sources from the Pushchino catalogue was carried out using the method of interplanetary scintillation. A total of 3620 sources were examined, and 812 of them were found to harbor compact (scintillating) components. Estimates of fluctuations of the flux density of these compact components were derived from the scintillation index ($${{m}_{{\max}}}$$) corresponding to an elongation of 25°. The angular size and compactness of 178 sources with compact components were estimated. Scintillation indices of sources corresponding to the compact component ($${{m}_{0}}$$) and flux densities of compact components were determined. It was demonstrated that slow variations of the spatial distribution of interplanetary plasma, which are related to the 11-year cycle of solar activity, may exert a systematic influence on the estimates of angular sizes of sources. Coefficients compensating the deviation from the spherical symmetry of solar wind in the estimates of angular sizes were found using the coefficient of asymmetry of the statistical distribution of intensity fluctuations. The study of correlations between the parameters of sources in the sample revealed that the maximum value of the scintillation index decreases as the integrated flux increases, while the angular size has no marked dependence on the integrated flux.  相似文献   
13.
A consistent study of the solar wind has been extended to a wide region of interplanetary space, up to distances from the Sun R ? 90 R s . Experiments are carried out with the radio telescopes of the Pushchino Radio Astronomy Observatory (Astrospace Center, Lebedev physical Institute, Russian Academy of Sciences): DKR-1000 (λ ≈ 2.7–2.9 m) and RT-22 (λ ≈ 1.35 cm), respectively. The radio-wave scattering characteristics, the scattering angle θ(R) and the scintillation index m(R), are studied. The formation of a steady supersonic solar wind is associated with a sequence of four stages whose scale in different solar wind streams changes within the range 10–23 R s , depending on the initial stream speed. These circumstances should be taken into account when predicting the state of the near space using data on the solar wind in regions of the interplanetary medium close to the Sun.  相似文献   
14.

An analysis of data from three years of monitoring of interplanetary scintillations in 2015–2017 during a phase of decreasing solar activity is presented. The observations were carried out on the Large Scanning Antenna of the Lebedev Physical Institute at 111 MHz. During the period considered, the spatial distriution of the scintillation level was close to spherically symmetrical, on average, and did not undergo any strong time variations on scales of months or years. The monthly-mean scintillation level is not correlated with theWolf number.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号