首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   13篇
  国内免费   1篇
测绘学   8篇
大气科学   20篇
地球物理   44篇
地质学   75篇
海洋学   24篇
天文学   78篇
自然地理   15篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   7篇
  2016年   4篇
  2015年   8篇
  2014年   7篇
  2013年   20篇
  2012年   6篇
  2011年   12篇
  2010年   8篇
  2009年   18篇
  2008年   10篇
  2007年   10篇
  2006年   7篇
  2005年   11篇
  2004年   12篇
  2003年   21篇
  2002年   9篇
  2001年   13篇
  2000年   11篇
  1999年   15篇
  1998年   7篇
  1997年   8篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1988年   2篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1974年   1篇
  1970年   2篇
  1967年   1篇
  1885年   1篇
排序方式: 共有264条查询结果,搜索用时 15 毫秒
221.
222.
223.
224.
225.
226.
Identification of the source of CO2 in natural reservoirs and development of physical models to account for the migration and interaction of this CO2 with the groundwater is essential for developing a quantitative understanding of the long term storage potential of CO2 in the subsurface. We present the results of 57 noble gas determinations in CO2 rich fields (>82%) from three natural reservoirs to the east of the Colorado Plateau uplift province, USA (Bravo Dome, NM., Sheep Mountain, CO. and McCallum Dome, CO.), and from two reservoirs from within the uplift area (St. John’s Dome, AZ., and McElmo Dome, CO.). We demonstrate that all fields have CO2/3He ratios consistent with a dominantly magmatic source. The most recent volcanics in the province date from 8 to 10 ka and are associated with the Bravo Dome field. The oldest magmatic activity dates from 42 to 70 Ma and is associated with the McElmo Dome field, located in the tectonically stable centre of the Colorado Plateau: CO2 can be stored within the subsurface on a millennia timescale.The manner and extent of contact of the CO2 phase with the groundwater system is a critical parameter in using these systems as natural analogues for geological storage of anthropogenic CO2. We show that coherent fractionation of groundwater 20Ne/36Ar with crustal radiogenic noble gases (4He, 21Ne, 40Ar) is explained by a two stage re-dissolution model: Stage 1: Magmatic CO2 injection into the groundwater system strips dissolved air-derived noble gases (ASW) and accumulated crustal/radiogenic noble gas by CO2/water phase partitioning. The CO2 containing the groundwater stripped gases provides the first reservoir fluid charge. Subsequent charges of CO2 provide no more ASW or crustal noble gases, and serve only to dilute the original ASW and crustal noble gas rich CO2. Reservoir scale preservation of concentration gradients in ASW-derived noble gases thus provide CO2 filling direction. This is seen in the Bravo Dome and St. John’s Dome fields. Stage 2: The noble gases re-dissolve into any available gas stripped groundwater. This is modeled as a Rayleigh distillation process and enables us to quantify for each sample: (1) the volume of groundwater originally ‘stripped’ on reservoir filling; and (2) the volume of groundwater involved in subsequent interaction. The original water volume that is gas stripped varies from as low as 0.0005 cm3 groundwater/cm3 gas (STP) in one Bravo Dome sample, to 2.56 cm3 groundwater/cm3 gas (STP) in a St. John’s Dome sample. Subsequent gas/groundwater equilibration varies within all fields, each showing a similar range, from zero to ∼100 cm3 water/cm3 gas (at reservoir pressure and temperature).  相似文献   
227.
A late Pleistocene long pollen record from Lake Urmia, NW Iran   总被引:4,自引:0,他引:4  
A palynological study based on two 100-m long cores from Lake Urmia in northwestern Iran provides a vegetation record spanning 200 ka, the longest pollen record for the continental interior of the Near East. During both penultimate and last glaciations, a steppe of Artemisia and Poaceae dominated the upland vegetation with a high proportion of Chenopodiaceae in both upland and lowland saline ecosystems. While Juniperus and deciduous Quercus trees were extremely rare and restricted to some refugia, Hippophaë rhamnoides constituted an important phanerophyte, particularly during the late last glacial period. A pronounced expansion in Ephedra shrub-steppe occurred at the end of the penultimate late-glacial period but was followed by extreme aridity that favoured an Artemisia steppe. Very high lake levels, registered by both pollen and sedimentary markers, occurred during the middle of the last glaciation and late part of the penultimate glaciation. The late-glacial to early Holocene transition is represented by a succession of Hippophaë, Ephedra, Betula, Pistacia and finally Juniperus and Quercus. The last interglacial period (Eemian), slightly warmer and moister than the Holocene, was followed by two interstadial phases similar in pattern to those recorded in the marine isotope record and southern European pollen sequences.  相似文献   
228.
Channel constrictions within an estuary can influence overall estuary-sea exchange of salt or suspended/dissolved material. The exchange is modulated by turbulent mixing through its effect on density stratification. Here we quantify turbulent mixing in Hikapu Reach, an estuarine channel in the Marlborough Sounds, New Zealand. The focus is on a period of relatively low freshwater input but where density stratification still persists throughout the tidal cycle, although the strength of stratification and its vertical structure vary substantially. The density stratification increases through the ebb tide, and decreases through the flood tide. During the spring tides observed here, ebb tidal flow speeds reached 0.7?m?s?1 and the buoyancy frequency squared was in the range 10?5 to 10?3?s?2. Turbulence parameters were estimated using both shear microstructure and velocimeter-derived inertial dissipation which compared favourably. The rate of dissipation of turbulent kinetic energy reached 1?×?10?6?m2?s?3 late in the ebb tide, and estimates of the gradient Richardson number (the ratio of stability to shear) fell as low as 0.1 (i.e. unstable) although the results show that bottom-boundary driven turbulence can dominate for periods. The implication, based on scaling, is that the mixing within the channel does not homogenise the water column within a tidal cycle. Scaling, developed to characterise the tidal advection relative to the channel length, shows how riverine-driven buoyancy fluxes can pass through the tidal channel section and the stratification can remain partially intact.  相似文献   
229.
The sources of the Paleocene London Basin marine to fluviodeltaic sandstones are currently unclear. High analysis number detrital zircon U-Pb age investigation of an early-mid Thanetian marine sand from East Kent, reveals a large spread of zircon age peaks indicative of a range of primary sources. In particular, a strong Ediacaran age peak is associated with the Cadomian Orogeny, while secondary peaks represent the Caledonian and various Mesoproterozoic to Archean orogenies. The near absence of grains indicative of the Variscan orogeny refutes a southerly or southwesterly source from Cornubia or Armorica, while the strong Cadomian peak points to Avalonian origin for a major component of the material. Furthermore, the relatively well expressed Mesoproterozoic to Archean age components most likely require significant additional Laurentian input. Comparison to published data shows that both Devonian Old Red Sandstone and northwesterly (Avalonia-Laurentia) derived Namurian-Westphalian Pennine Basin sandstones show strong similarities to the Thanetian sand. This pattern is consistent with derivation of Thanetian material via a SE draining proto-Thames River system that was initiated in the Paleocene due to uplift of western and northwestern Britain. This river system would have incised and eroded cover sandstones and potentially also Avalonian basement of mid to north Wales and England. However, the possibility of a contribution of Laurentian grains directly from the north via longshore drift cannot be excluded by the data, and the extent to which the sediment source signatures of Paleogene sands of the London Basin are variable both geographically and over time remains unclear.  相似文献   
230.
Loess in the Carpathian Basin is some of the thickest and most complete in Europe. Located in the Vojvodina region of the southern Carpathian Basin the Crvenka loess-palaeosol section appears to preserve a detailed climate proxy archive of the last glacial–interglacial cycle. Central to the interpretation of the site is a detailed and independent age model. Here, the results of detailed optically stimulated luminescence (OSL) dating and elevated temperature post-IR infrared stimulated luminescence (post-IR IRSL) dating are presented. Quartz OSL ages appear accurate to about 50–60 ka, where 2D0 values are reached, while elevated temperature post-IR IRSL yields more accurate ages below this. In line with recent results, the latter signal appears to show negligible fading rates. Two age models are developed that combine (a) OSL and post-IR IRSL ages and (b) OSL ages and ‘expected’ ages from tying unit boundaries to the marine record. If the luminescence model is regarded as accurate, differences between this and the OSL/marine age model raise questions over the accuracy of the latter, as well as the processes controlling the zeroing of luminescence dates. The luminescence based age model is then used to derive the first fully independent reconstruction of climate proxies and accumulation rates from Carpathian loess. Such reconstructions can be used to compare to other independent records without assumptions inherent in correlation-based approaches. The findings demonstrate how variable accumulation rate is at the site, and compared to other independently dated Carpathian loess records. Average values vary north–south but are of similar order throughout the basin. Accumulation rate was highest during the later part of the last glacial, but variation on millennial timescales does not always match shifts in grain-size, suggesting diverse and complex influences. Environmental reconstructions using grain-size and magnetic susceptibility show that no one atmospheric system or air mass can explain the changes in the Carpathian Basin and that millennial-scale variability can only intermittently be tied to North Atlantic Heinrich events. Expanded ice sheets during the peak last glacial, combined with other atmospheric teleconnections, may have served to develop a strong anticyclone in the region. It was likely windier during earlier parts of the last glacial, but Atlantic and Mediterranean moisture was probably less abundant than during more humid interglacials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号