首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1447篇
  免费   52篇
  国内免费   18篇
测绘学   30篇
大气科学   163篇
地球物理   359篇
地质学   444篇
海洋学   126篇
天文学   259篇
综合类   1篇
自然地理   135篇
  2023年   7篇
  2022年   8篇
  2021年   26篇
  2020年   25篇
  2019年   21篇
  2018年   38篇
  2017年   35篇
  2016年   47篇
  2015年   32篇
  2014年   55篇
  2013年   70篇
  2012年   42篇
  2011年   83篇
  2010年   64篇
  2009年   90篇
  2008年   73篇
  2007年   67篇
  2006年   65篇
  2005年   60篇
  2004年   43篇
  2003年   66篇
  2002年   31篇
  2001年   30篇
  2000年   34篇
  1999年   24篇
  1998年   18篇
  1997年   18篇
  1996年   18篇
  1995年   16篇
  1994年   17篇
  1993年   18篇
  1992年   16篇
  1991年   14篇
  1990年   11篇
  1989年   8篇
  1988年   10篇
  1987年   13篇
  1986年   15篇
  1985年   22篇
  1984年   25篇
  1983年   26篇
  1982年   27篇
  1981年   11篇
  1980年   23篇
  1979年   14篇
  1978年   12篇
  1977年   6篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
排序方式: 共有1517条查询结果,搜索用时 0 毫秒
171.
172.
Maps of satellite-derived estimates of monthly averaged chlorophyll a concentration over the northern West Florida Shelf show interannual variations concentrated near the coastline, but also extending offshore over the shelf in a tongue-like pattern from the Apalachicola River during the late winter and early spring. These anomalies are significantly correlated with interannual variability in the flow rate of the Apalachicola River, which is linked to the precipitation anomalies over the watershed, over a region extending 150–200 km offshore out to roughly the 100 m isobath. This study examines the variability of the Apalachicola River and its impacts on the variability of water properties over the northern West Florida Shelf. A series of numerical model experiments show that episodic wind-driven offshore transport of the Apalachicola River plume is a likely physical mechanism for connecting the variability of the river discharge with oceanic variability over the middle and outer shelf.  相似文献   
173.
Investigating the ancient Martian magnetic field using microwaves   总被引:1,自引:0,他引:1  
The new microwave palaeointensity technique has been used to investigate samples from the Martian meteorite Nakhla. This technique is a promising new way to obtain absolute palaeointensity information regarding the ancient Martian magnetic field as recorded by the Martian meteorites. Assuming that a part of the magnetic remanence is of thermal origin and originating on Mars the two samples studied yield estimates of 4 μT for the Martian magnetic field at 1.35 Ga.  相似文献   
174.
Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef (One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 microM NH4+; 2.3 microM PO4(-3)) rapidly declined, reaching near-background levels (mean = 0.9 microM NH4+; 0.5 microM PO4(-3)) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 microM NH4+; 5.1 microM PO4(-3)) declining to means of 11.3 microM NH4+ and 2.4 microM PO4(-3) at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients. ENCORE has shown that reef organisms and processes investigated in situ were impacted by elevated nutrients. Impacts were dependent on dose level, whether nitrogen and/or phosphorus were elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment were visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs. inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies.  相似文献   
175.
An integrated modelling approach (MIRSED) which utilizes the process‐based soil erosion model WEPP (Water Erosion Prediction Project) is presented for the assessment of hillslope‐scale soil erosion at five sites throughout England and Wales. The methodology draws upon previous uncertainty analysis of the WEPP hillslope soil erosion model by the authors to qualify model results within an uncertainty framework. A method for incorporating model uncertainty from a range of sources is discussed as a first step towards using and learning from results produced through the GLUE (Generalized Likelihood Uncertainty Estimation) technique. Results are presented and compared to available observed data, which illustrate that levels of uncertainty are significant and must be taken into account if a meaningful understanding of output from models such as WEPP is to be achieved. Furthermore, the collection of quality, observed data is underlined for two reasons: as an essential tool in the development of soil erosion modelling and also to allow further constraint of model uncertainty. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
176.
In this paper the mid-ocean ridge axial valley is modelled as a steady-state lithospheric neck in which lithospheric stretching balances lithospheric accretion. Conversely, the axial high is a steady-state lithospheric bulge. The lithosphere is modelled as a thin plate with a Newtonian rheology. It is shown that an axial valley will occur if the rate of viscosity increase away from the ridge axis is faster than the rate at which accretion decreases. An axial high will occur if the opposite condition holds. This is consistent with the observation that axial valleys occur at low spreading rates and axial highs at high spreading rates. By fitting our model to profiles across the Mid-Atlantic Ridge and the East Pacific Rise and assuming the lithospheric thickness at the ridge axis to be 5 km, we find accretion widths of 6–8 km. We find the width over which there is a significant increase in lithospheric viscosity to be also 6–8 km.  相似文献   
177.
Fluid ascent through the solid lithosphere and its relation to earthquakes   总被引:1,自引:0,他引:1  
The Earth is continuously expelling gases and liquids from great depths—juvenile volatiles from the mantle and recycled metamorphic products. Some of these fluids ascend through liquid rock in volcanic processes, but others utilize fractures and faults as conduits through the solid lithosphere. The latter process may have a major influence on earthquakes, since fluids at near lithostatic pressures appear to be required to activate deep faults that would otherwise remain locked.Fluids can be driven upward through solid rock by buoyancy, but only if present in sufficient concentration to form large-scale domains occupying interconnected fracture porosity. A growing fluid domain becomes so mobilized only when it attains the critical vertical dimension required for hydrostatic instability. This dimension, depending on the ultimate compressive yield strength of the rock, may be as much as several kilometers.Any column of fluid ascending through fractures in the solid lithosphere from a prolific deep source must become organized into a vertical sequence of discrete domains, separated by fluid-pressure discontinuities. This is required because a continuous hydrostatic-fluid-pressure profile extending from an arbitrarily deep source to the surface cannot be permitted by the finite strength of rock. A vertically stacked sequence of domains allows the internal fluid-pressure profile to approximate the external rock-stress profile in a stepwise fashion. The pressure discontinuity below the base of the uppermost hydrostatic domain may be responsible for some occurrences of so-called anomalous geopressures. An ascending stream of fluid that percolates upward from a deep source through a column of domains must encounter a sequence of abrupt pressure decreases at the transitions between successive domains. If supercritical gases act as solvents, the dissolved substances may drop out of solution at such pressure discontinuities, resulting in a local concentration of minerals and other substances.At great depths, brittle fracture would normally be prevented by high pressure and temperature, with all excessive stress discharged by ductile flow. Rock strata invaded by an ascending fluid domain are weakened, however, because cracks generated or reactivated by the high-pressure fluid can support the overburden, greatly reducing internal friction. This reduction of strength may cause a previously stressed rock to fail, resulting in hydraulic shear fracture. Thus, earthquakes may be triggered by the buoyant migration of deep-source fluids.The actual timing of the failure that leads to such an earthquake may be determined by the relatively rapid inflation of a fluid domain and not by any significant increase in the probably much slower rate of regional tectonic strain. Many earthquake precursory phenomena may be secondary symptoms of an increase in pore-fluid pressure, and certain coseismic phenomena may result from the venting of high-pressure fluids when faults break the surface. Instabilities in the migration of such fluid domains may also contribute to or cause the eruption of mud volcanoes, magma volcanoes, and kimberlite pipes.  相似文献   
178.
179.
Airborne fine particulate matter across the United States is monitored by different networks, the three prevalent ones presently being the Clean Air Status and Trend Network (CASTNet), the Interagency Monitoring of PROtected Visual Environment Network (IMPROVE) and the Speciation and Trend Network (STN). If combined, these three networks provide speciated fine particulate data at several hundred locations throughout the United States. Yet, differences in sampling protocols and samples handling may not allow their joint use. With these concerns in mind, the objective of this study is to assess the spatial and temporal comparability of the sulfate, nitrate and ammonium concentrations reported by each of these networks. One of the major differences between networks is the sampling frequency they adopted. While CASTNet measures pollution levels on seven-day integrated samples, STN and IMPROVE data pertain to 24-hour samples collected every three days. STN and IMPROVE data therefore exhibit considerably more short-term variability than their CASTNet counterpart. We show that, despite their apparent incongruity, averaging the data with a window size of four to six weeks is sufficient to remove the effects of differences in sampling frequency and duration and allow meaningful comparison of the signals reported by the three networks of concern. After averaging, all the sulfate and, to a lesser degree, ammonium concentrations reported are fairly similar. Nitrate concentrations, on the other hand, are still divergent. We speculate that this divergence originates from the different types of filters used to collect particulate nitrate. Finally, using a rotated principal component technique (RPCA), we determined the number and the geographical organization of the significant temporal modes of variation (clusters) detected by each network for the three pollutants of interest. For sulfate and ammonium, the clusters’ geographical boundaries established for each network and the modes of variations within each cluster seem to correspond. RPCA erformed on nitrate concentrations revealed that, for the CASTNet and IMPROVE networks, the modes of variation do not correspond to unified geographical regions but are found more sporadically. For STN, the clustered areas are unified and easily delineable. We conclude that the possibility of jointly using the data collected by CASTNet, IMPROVE and STN has to be weighed pollutant by pollutant. While sulfate and ammonium data show some potential for joint use, at this point, combining the nitrate data from these monitoring networks may not be a judicious choice.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号