首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1445篇
  免费   52篇
  国内免费   18篇
测绘学   30篇
大气科学   163篇
地球物理   359篇
地质学   442篇
海洋学   126篇
天文学   259篇
综合类   1篇
自然地理   135篇
  2023年   7篇
  2022年   8篇
  2021年   26篇
  2020年   25篇
  2019年   21篇
  2018年   38篇
  2017年   35篇
  2016年   47篇
  2015年   32篇
  2014年   55篇
  2013年   70篇
  2012年   42篇
  2011年   82篇
  2010年   64篇
  2009年   90篇
  2008年   73篇
  2007年   67篇
  2006年   65篇
  2005年   60篇
  2004年   43篇
  2003年   66篇
  2002年   31篇
  2001年   30篇
  2000年   34篇
  1999年   24篇
  1998年   18篇
  1997年   18篇
  1996年   18篇
  1995年   16篇
  1994年   17篇
  1993年   18篇
  1992年   16篇
  1991年   14篇
  1990年   11篇
  1989年   8篇
  1988年   10篇
  1987年   13篇
  1986年   15篇
  1985年   22篇
  1984年   25篇
  1983年   25篇
  1982年   27篇
  1981年   11篇
  1980年   23篇
  1979年   14篇
  1978年   12篇
  1977年   6篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
排序方式: 共有1515条查询结果,搜索用时 15 毫秒
261.
262.
Abstract— We present June 2004 radar images of asteroid 25143 Itokawa (1998 SF36) that improve upon the longitude‐latitude coverage of images obtained in 2001 by Ostro et al. (2004) and use the 2001–2004 data to refine that paper's constraints on Itokawa's shape. The 2004 images, the first of the asteroid's southern side, look distinctly different from the 2001 images, revealing leading edges that are much more curved and rugged than the nearly convex leading edges seen at northern latitudes in 2001. Itokawa is shaped like a slightly asymmetrical, bent, lumpy ellipsoid with dimensions along the principal axes within 10% of 594 times 320 times 288 m. To illustrate the uncertainty space associated with shape reconstruction from images with suboptimal orientational coverage, we present two alternative three‐dimensional models of the object.  相似文献   
263.
Steven T. Suess 《Solar physics》1982,75(1-2):145-159
Polar coronal plumes are modeled using concentrations of magnetic flux at 1.01R , and assuming the field is current-free, or a potential field. Identifying the density enhancement of plumes with magnetic flux concentration produces good agreement between 1.01R and 1.10R , for model conditions of a large background magnetic field and a plume separation of 50 000 to 70 000 km at the base. Beyond 1.10R , both plumes and the potential field diverge very nearly as r 2.Also Department of Astrogeophysics, University of Colorado, Boulder, Colo. 80309, U.S.A. Presently visiting Stanford University Institute for Plasma Research, Via Crespi, Stanford, Calif. 94303, U.S.A.  相似文献   
264.
During the time period of November 1968 to March 1970, 259 15.4 GHz impulsive microwave bursts have been identified of which 147 had associated 2–12 Å soft X-ray bursts. Average durations, rise times, and decay times for the microwave bursts are 2.9 ± 2.4 min, 0.9 ± 0.8 min, and 2.2 ± 2.1 min, respectively.Total durations and decay times for the X-ray events display a wide range of values from a few minutes to several hours. Rise times for 50 % of the events fell in the range of 2 to 7 min. A significant fraction (32 %) of the X-ray events may exhibit a flux enhancement prior to the main outburst.For 85 % of the flare cases, the X-ray event begins simultaneously with or before the microwave event. In 91 % of the cases the X-ray event peaks later than the microwave event. The average delay is 3.0 ± 1.9 min with 50 % of cases in the range of 0 to 4 min.The X-ray flux increases are significantly correlated with the microwave flux, increases, having a correlation coefficient of 0.43 (> 99.9 % confident).This work was supported in part by the Office of Naval Research under contract NOOO14-68-A-0196-0009 and the National Aeronautics and Space Administration through grant NGL-16-001-002.  相似文献   
265.
The distribution of the short‐lived radionuclide 26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions in CO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearing CAIs in the Dominion Range (DOM) 08006 (CO3.0) and DOM 08004 (CO3.1) chondrites. All minerals in DOM 08006 CAIs as well as hibonite, spinel, and pyroxene in DOM 08004 are uniformly 16O‐rich (Δ17O = ?25 to ?20‰) but grossite and melilite in DOM 08004 CAIs are not; Δ17O of grossite and melilite range from ~ ?11 to ~0‰ and from ~ ?23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial 26Al/27Al ratios (26Al/27Al)0 is seen, with four having (26Al/27Al)0 ≤1.1 × 10?5 and six having (26Al/27Al)0 ≥3.7 × 10?5. Five of the 26Al‐rich CAIs have (26Al/27Al)0 within error of 4.5 × 10?5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10?5 given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the 26Al‐poor CAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in the DOM 08006 CAIs, as well as spinel, hibonite, and Al‐diopside in the DOM 08004 CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where the CO grossite‐bearing CAIs originated. Oxygen isotopic heterogeneity in CAIs from DOM 08004 resulted from exchange between the initially 16O‐rich (Δ17O ~?24‰) melilite and grossite and 16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on the CO chondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic 26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on the CO parent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected most CAIs in CO ≥3.1 chondrites.  相似文献   
266.
Extensive testing suggests that astrometric techniques can be employed to detect and study virtually any planetary system that may exist within 40 light years (12.5 parsec) of the Sun. Following the conclusion of Paper I [G. Gatewood, Icarus27 (1976), 1–12], the astrometric group at the Allegheny Observatory began an intensive survey of 20 nearby stars to detect the nonlinear variations in their motion that planetary systems would induce. Several tests conducted to further our understanding of the limitations of this survey indicated that the photographic detector itself is responsible for the majority of the random error. A new photoelectric detector has been designed and a simplified prototype of it successfully tested. The new detector is expected to be able to utilize virtually all of the astrometric information transmitted through the Earth's atmosphere. This is sufficient to determine relative positions to within an accuracy of approximately 1 milliarcsec/hr. Such precisions exceed the design capabilities of the best existing astrometric telescopes, thus a feasibility study has been conducted for the design of an improved instrument. The study concludes that a new ground-based telescope and the new detector combined should be able to study stars as faint as the 17th magnitude with an annual accuracy of a few tenths of a milliarcsecond. However, to obtain the ultimate accuracy possible from current technology, we must place an astrometric system above the Earth's atmosphere. A space-borne instrument utilizing the new detector would in theory have sufficient accuracy to detect any Earth-like planet orbiting any of the several hundred stars nearest the Sun.  相似文献   
267.
The 21-cm forest     
We examine the prospects for studying the pre-reionization intergalactic medium (IGM) through the so-called 21-cm forest in spectra of bright high-redshift radio sources. We first compute the evolution of the mean optical depth τ for models that include X-ray heating of the IGM gas, Wouthuysen–Field coupling, and reionization. Under most circumstances, the spin temperature T S grows large well before reionization begins in earnest; this occurs so long as the X-ray luminosity of high-redshift starbursts (per unit star formation rate) is comparable to that in nearby galaxies. As a result,  τ≲ 10−3  throughout most of reionization, and background sources must sit well beyond the reionization surface in order to experience absorption that is measurable by square-kilometre class telescopes. H  ii regions produce relatively large 'transmission gaps' and may therefore still be observable during the early stages of reionization. Absorption from sheets and filaments in the cosmic web fades once T S becomes large and should be rare during reionization. Minihaloes can produce strong (albeit narrow) absorption features. Measuring their abundance would yield useful limits on the strength of feedback processes in the IGM as well as their effect on reionization.  相似文献   
268.
The Spectro-Polarimeter for Infrared and Optical Regions (SPINOR) is a new spectro-polarimeter that will serve as a facility instrument for the Dunn Solar Telescope at the National Solar Observatory. This instrument is capable of achromatic polarimetry over a very broad range of wavelengths, from 430 to 1600 nm, allowing for the simultaneous observation of several visible and infrared spectral regions with full Stokes polarimetry. Another key feature of the design is its flexibility to observe virtually any combination of spectral lines, limited only by practical considerations (e.g., the number of detectors available, space on the optical bench, etc.). Visiting Astronomers, National Solar Observatory, operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation.  相似文献   
269.
We present an overview of the data and models collected for the Whole Heliosphere Interval, an international campaign to study the three-dimensional solar?Cheliospheric?Cplanetary connected system near solar minimum. The data and models correspond to solar Carrington Rotation 2068 (20 March??C?16 April 2008) extending from below the solar photosphere, through interplanetary space, and down to Earth??s mesosphere. Nearly 200 people participated in aspects of WHI studies, analyzing and interpreting data from nearly 100 instruments and models in order to elucidate the physics of fundamental heliophysical processes. The solar and inner heliospheric data showed structure consistent with the declining phase of the solar cycle. A closely spaced cluster of low-latitude active regions was responsible for an increased level of magnetic activity, while a highly warped current sheet dominated heliospheric structure. The geospace data revealed an unusually high level of activity, driven primarily by the periodic impingement of high-speed streams. The WHI studies traced the solar activity and structure into the heliosphere and geospace, and provided new insight into the nature of the interconnected heliophysical system near solar minimum.  相似文献   
270.
Abstract– The Opportunity rover of the Mars Exploration Rover mission encountered an isolated rock fragment with textural, mineralogical, and chemical properties similar to basaltic shergottites. This finding was confirmed by all rover instruments, and a comprehensive study of these results is reported here. Spectra from the miniature thermal emission spectrometer and the Panoramic Camera reveal a pyroxene‐rich mineralogy, which is also evident in Mössbauer spectra and in normative mineralogy derived from bulk chemistry measured by the alpha particle X‐ray spectrometer. The correspondence of Bounce Rock’s chemical composition with the composition of certain basaltic shergottites, especially Elephant Moraine (EET) 79001 lithology B and Queen Alexandra Range (QUE) 94201, is very close, with only Cl, Fe, and Ti exhibiting deviations. Chemical analyses further demonstrate characteristics typical of Mars such as the Fe/Mn ratio and P concentrations. Possible shock features support the idea that Bounce Rock was ejected from an impact crater, most likely in the Meridiani Planum region. Bopolu crater, 19.3 km in diameter, located 75 km to the southwest could be the source crater. To date, no other rocks of this composition have been encountered by any of the rovers on Mars. The finding of Bounce Rock by the Opportunity rover provides further direct evidence for an origin of basaltic shergottite meteorites from Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号