首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   552篇
  免费   15篇
  国内免费   6篇
测绘学   19篇
大气科学   40篇
地球物理   130篇
地质学   154篇
海洋学   44篇
天文学   140篇
综合类   4篇
自然地理   42篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   8篇
  2018年   14篇
  2017年   7篇
  2016年   10篇
  2015年   11篇
  2014年   21篇
  2013年   33篇
  2012年   31篇
  2011年   29篇
  2010年   23篇
  2009年   28篇
  2008年   26篇
  2007年   31篇
  2006年   18篇
  2005年   27篇
  2004年   43篇
  2003年   25篇
  2002年   35篇
  2001年   23篇
  2000年   24篇
  1999年   17篇
  1998年   16篇
  1997年   9篇
  1996年   10篇
  1995年   8篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1981年   1篇
  1980年   2篇
  1976年   1篇
排序方式: 共有573条查询结果,搜索用时 6 毫秒
571.

Interpolation of point measurements using geostatistical techniques such as kriging can be used to estimate values at non-sampled locations in space. Traditional geostatistics are based on the spatial autocorrelation concept that nearby things are more related than distant things. In this study, additional information was used to modify the traditional Euclidean concept of distance into an adjusted distance metric that incorporates similarity in terms of quantifiable landscape characteristics such as topography or land use. This new approach was tested by interpolating soil moisture content, pH and carbon-to-nitrogen (C:N) ratio measured in both the mineral and the organic soil layers at a field site in central Sweden. Semivariograms were created using both the traditional distance metrics and the proposed adjusted distance metrics to carry out ordinary kriging (OK) interpolations between sampling points. In addition, kriging with external drift (KED) was used to interpolate soil properties to evaluate the ability of the adjusted distance metric to incorporate secondary data into interpolations. The new adjusted distance metric typically lowered the nugget associated with the semivariogram, thereby better representing small-scale variability in the measured data compared to semivariograms based on the traditional distance metric. The pattern of the resulting kriging interpolations using KED and OK based on the adjusted distance metric were similar because they represented secondary data and, thus, enhanced small-scale variability compared to traditional distance OK. This created interpolations that agreed better with what is expected for the real-world spatial variation of the measured properties. Based on cross-validation error, OK interpolations using the adjusted distance metric better fit observed data than either OK interpolations using traditional distance or KED.  相似文献   
572.
Drought has an impact on many aspects of society. To help decision makers reduce the impacts of drought, it is important to improve our understanding of the characteristics and relationships of atmospheric and oceanic parameters that cause drought. In this study, the use of data mining techniques is introduced to find associations between drought and several oceanic and climatic indices that could help users in making knowledgeable decisions about drought responses before the drought actually occurs. Data mining techniques enable users to search for hidden patterns and find association rules for target data sets such as drought episodes. These techniques have been used for commercial applications, medical research, and telecommunications, but not for drought. In this study, two time-series data mining algorithms are used in Nebraska to illustrate the identification of the relationships between oceanic parameters and drought indices. The algorithms provide flexibility in time-series analyses and identify drought episodes separate from normal and wet conditions, and find relationships between drought and oceanic indices in a manner different from the traditional statistical associations. The drought episodes were determined based on the Standardized Precipitation Index (SPI) and Palmer Drought Severity Index (PDSI). Associations were observed between drought episodes and oceanic and atmospheric indices that include the Southern Oscillation Index (SOI), the Multivariate ENSO Index (MEI), the Pacific/North American (PNA) index, the North Atlantic Oscillation (NAO) Index, and the Pacific Decadal Oscillation (PDO) Index. The experimental results showed that among these indices, the SOI, MEI, and PDO have relatively stronger relationships with drought episodes over selected stations in Nebraska. Moreover, the study suggests that data mining techniques can help us to monitor drought using oceanic indices as a precursor of drought.  相似文献   
573.
Current country-level commitments under the Paris Agreement fall short of putting the world on a required trajectory to stay below a 2°C temperature increase compared to pre-industrial levels by the end of the century. Therefore, the timing of increased ambition is hugely important and as such this paper analyses the impact of both the short and long-term goals of the Paris Agreement on global emissions and economic growth. Using the hybrid TIAM-UCL-MSA model we consider the achievement of a 2°C target against a baseline of the Nationally Determined Contributions (NDCs) while also considering the timing of increased ambition of the NDCs by 2030 and the impacts of cost reductions of key low-carbon technologies. We find that the rate of emissions reduction ambition required between 2030 and 2050 is almost double when the NDCs are achieved but not ratcheted up until 2030, and leads to lower levels of economic growth throughout the rest of the century. However, if action is taken immediately and is accompanied by increasingly rapid low-carbon technology cost reductions, then there is almost no difference in GDP compared to the path suggested by the current NDC commitments.

Key policy insights

  • Delaying the additional action needed to achieve the 2°C target until 2030 is shown to require twice the rate of emissions reductions between 2030 and 2050.

  • Total cumulative GDP over the century is lower when additional action is delayed to 2030 and therefore has an overall negative impact on the economy, even without including climate change damages.

  • Increased ratcheting of the NDC commitments should therefore be undertaken sooner rather than later, starting in conjunction with the 2023 Global Stocktake.

  • Early action combined with cost reductions in key renewable energy technologies can reduce GDP losses to minimal levels (<1%).

  • A 2°C future with technological advancements is clearly possible for a similar cost as a 3.3°C world without these advances, but with lower damages and losses from climate change.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号