首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   867篇
  免费   22篇
  国内免费   9篇
测绘学   24篇
大气科学   60篇
地球物理   230篇
地质学   229篇
海洋学   59篇
天文学   233篇
综合类   5篇
自然地理   58篇
  2022年   3篇
  2021年   6篇
  2020年   10篇
  2019年   10篇
  2018年   17篇
  2017年   12篇
  2016年   15篇
  2015年   15篇
  2014年   26篇
  2013年   45篇
  2012年   41篇
  2011年   42篇
  2010年   29篇
  2009年   43篇
  2008年   41篇
  2007年   46篇
  2006年   30篇
  2005年   37篇
  2004年   55篇
  2003年   32篇
  2002年   40篇
  2001年   31篇
  2000年   32篇
  1999年   24篇
  1998年   24篇
  1997年   12篇
  1996年   14篇
  1995年   8篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1986年   7篇
  1985年   8篇
  1984年   9篇
  1983年   15篇
  1982年   11篇
  1981年   5篇
  1980年   9篇
  1979年   13篇
  1978年   5篇
  1977年   8篇
  1976年   7篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1961年   2篇
排序方式: 共有898条查询结果,搜索用时 11 毫秒
471.
Recent stratigraphic studies at Vesuvius have revealed that, during the past 4,000 years, long lasting, moderate to low-intensity eruptions, associated with continuous or pulsating ash emission, have repeatedly occurred. The present work focuses on the AS1a eruption, the first of a series of ash-dominated explosive episodes which characterized the period between the two Subplinian eruptions of 472 AD and 1631 AD. The deposits of this eruption consist of an alternation of massive and thinly laminated ash layers and minor well sorted lapilli beds, reflecting the pulsatory injection into the atmosphere of variably concentrated ash-plumes alternating with Violent Strombolian stages. Despite its nearly constant chemical composition, the juvenile material shows variable external clast morphologies and groundmass textures, reflecting the fragmentation of a magma body with lateral and/or vertical gradients in both vesicularity and crystal content. Glass compositions and mineralogical assemblages indicate that the eruption was fed by rather homogeneous phonotephritic magma batches rising from a reservoir located at ~ 4 km (100 MPa) depth, with fluctuations between magma delivery and magma discharge. Using crystal size distribution (CSD) analyses of plagioclase and leucite microlites, we estimate that the transit time of the magma in the conduit was on the order of ~ 2 days, corresponding to an ascent rate of around 2 × 10−2 ms−1. Accordingly, assuming a typical conduit diameter for this type of eruption, the minimum duration of the AS1a event is between about 1.5 and 6 years. Magma fragmentation occurred in an inertially driven regime that, in a magma with low viscosity and surface tension, can act also under conditions of slow ascent.  相似文献   
472.
Surfzone bathymetry often is resolved poorly in time because watercraft surveys cannot be performed when waves are large, and remote sensing techniques have limited vertical accuracy. However, accurate high-frequency bathymetric information at fixed locations can be obtained from altimeters that sample nearly continuously, even during storms. A method is developed to generate temporally and spatially dense maps of evolving surfzone bathymetry by updating infrequent spatially dense watercraft surveys with the bathymetric change measured by a spatially sparse array of nearly continuously sampling altimeters. The update method is applied to observations of the evolution of shore-perpendicular rip current channels (dredged in Duck, NC, 2012) and shore-parallel sandbars (observed in Duck, NC, 1994). The updated maps are compared with maps made by temporally interpolating the watercraft surveys, and with maps made by spatially interpolating the altimeter measurements at any given time. Updated maps of the surfzone rip channels and sandbars are more accurate than maps obtained by using either only watercraft surveys or only the altimeter measurements. Hourly altimeter-updated bathymetric estimates of five rip channels show rapid migration and infill events not resolved by watercraft surveys alone. For a 2-month observational record of sandbars, altimeter-updated maps every 6 h between nearly daily surveys improve the time resolution of rapid bar-migration events.  相似文献   
473.
474.
Navigating marine electromagnetic transmitters using dipole field geometry   总被引:3,自引:0,他引:3  
The marine controlled source electromagnetic (CSEM) technique has been adopted by the hydrocarbon industry to characterize the resistivity of targets identified from seismic data prior to drilling. Over the years, marine controlled source electromagnetic has matured to the point that four‐dimensional or time lapse surveys and monitoring could be applied to hydrocarbon reservoirs in production, or to monitor the sequestration of carbon dioxide. Marine controlled source electromagnetic surveys have also been used to target shallow resistors such as gas hydrates. These novel uses of the technique require very well constrained transmitter and receiver geometry in order to make meaningful and accurate geologic interpretations of the data. Current navigation in marine controlled source electromagnetic surveys utilize a long base line, or a short base line, acoustic navigation system to locate the transmitter and seafloor receivers. If these systems fail, then rudimentary navigation is possible by assuming the transmitter follows in the ship's track. However, these navigational assumptions are insufficient to capture the detailed orientation and position of the transmitter required for both shallow targets and repeat surveys. In circumstances when acoustic navigation systems fail we propose the use of an inversion algorithm that solves for transmitter geometry. This algorithm utilizes the transmitter's electromagnetic dipole radiation pattern as recorded by stationary, close range (<1000 m), receivers in order to model the geometry of the transmitter. We test the code with a synthetic model and validate it with data from a well navigated controlled source electromagnetic survey over the Scarborough gas field in Australia.  相似文献   
475.
The floor of Rabaul caldera experiences complex deformation as revealed both in the geological and historical record, as well as through recent systematic monitoring. The observed deformation pattern has been modelled previously as being caused by tumescent strain above one or more point sources at shallow levels within the caldera block, or as a response of the caldera structure to deeper sources of deformation. Here, two-dimensional finite element modelling is used to re-interpret the pre-1994 eruption deformation data, demonstrating that the observed pattern may have been caused by dykes located in sectors of the ring fault system, as delimited by seismicity. Both a pressurised ring structure and a pair of arcuate sources are modelled. Maximum compressional stress results in a central position within the encompassed block, and a moat-like feature forms offset outwards from the intersection of the azimuth of the modelled deformation sources and the free surface. The modelled deformation generally fits well with the observed movements. That the shallow ring dyke appears not to be complete, existing as two discrete arcuate dykes, helps to explain observed changes in the indicated tilt directions through time. Changing areas of relative down-warping offset outwards from the seismically active ring structure, and north/south-oriented structural up-doming south of Matupit. The distribution of thermal anomalies, and the lack of evidence for shallow central caldera intrusions, can also be explained by this scenario. Associated normal faulting above these dykes, and/or the stress regime generated by simultaneous intrusions into opposite sides of the ring fault, are proposed to explain the apparent inward dip of the intrusions at very shallow levels, leading to the eruptive sites being offset outwards from the seismic zone. A conceptual model is proposed to try to explain the general behaviour of the caldera between 1971 and the eruption of 1994.  相似文献   
476.
Tephra fall from the August 1991 eruption of Volcán Hudson affected some 100,000 km2 of Patagonia and was almost immediately reworked by strong winds, creating billowing clouds of remobilised ash, or ‘ash storms’. The immediate impacts on agriculture and rural communities were severe, but were then greatly exacerbated by continuing ash storms. This paper describes the findings of a 3-week study tour of the diverse environments of southern Patagonia affected by ash storms, with an emphasis on determining the impacts of repeated ash storms on agriculture and local practices that were developed in an attempt to mitigate these impacts. Ash storms produce similar effects to initial tephra eruptions, prolonged for considerable periods. These have included the burial of farmland under dune deposits, abrasion of vegetation and contamination of feed supplies with fine ash. These impacts can then cause problems for grazing animals such as starvation, severe tooth abrasion, gastrointestinal problems, corneal abrasion and blindness, and exhaustion if sheep fleeces become laden with ash. In addition, ash storms have led to exacerbated soil erosion, human health impacts, increased cleanup requirements, sedimentation in irrigation canals, and disruption of aviation and land transport. Ash deposits were naturally stabilised most rapidly in areas with high rainfall (>1,500 mm/year) through compaction and enhanced vegetation growth. Stabilisation was slowest in windy, semi-arid regions. Destruction of vegetation and suppression of regrowth by heavy tephra fall (>100 mm) hindered the stabilisation of deposits for years, and reduced the surface friction which increased wind erosivity. Stabilisation of tephra deposits was improved by intensive tillage, use of windbreaks and where there was dense and taller vegetative cover. Long-term drought and the impracticality of mixing ash deposits with soil by tillage on large farms was a barrier to stabilising deposits and, in turn, agricultural recovery. The continuing ash storms motivated the partial evacuation of small rural towns such as Chile Chico (Chile) and Los Antiguos (Argentina) in September–December 1991, after the primary tephra fall in August 1991. Greatly increased municipal cleanup efforts had to be sustained beyond the initial tephra fall to cope with the ongoing impacts of ash storms. Throughout the 1990s, ash storms contributed to continued population migration out of the affected area, leaving hundreds of farms abandoned on the Argentine steppe. The major lesson from our study is the importance of stabilisation of ash deposits as soon as possible after the initial eruption, particularly in windy, arid climates. Suggested mitigation measures include deep cultivation of the ash into the soil and erecting windbreaks.  相似文献   
477.
Cryptogams are communities of non-vascular plants that live on the soil surface. Numerous functions have been attributed to these crusts, including changes in soil fertility and nutrient status, soil hydrology and soil erosion. Most significant for this paper is the reported benefit of cryptogams in reducing soil erosion by water in semi-arid areas. However, to date there have been few attempts to understand the soil conservation value of cryptogams in subsistence agricultural systems or in humid mountain environments. This paper investigates the potential of cryptogams in soil erosion by water on agricultural hillslope terraces (bariland) in the Nepal Middle Hills of the southern monsoonal Himalaya. The research is significant because the loss of fertile topsoil is considered by some to be the biggest threat to the livelihoods of subsistence farmers in the area in the medium and long term. The current study was conducted in the field between two of the weeding events that take place under maize cover, grown in the traditional manner. Three groundcover types which represented (i) maize only (types A), (ii) maize and weed cover (types B), and (iii) maize and cryptogam cover (types C) were monitored utilizing multiple microerosion plots. Measurements of runoff and soil loss data were collected sequentially on a storm-by-storm basis throughout the monitored period from 24 July 1997 to 29 August 1997. Measurements of infiltration rates were also taken on each of the groundcover types at selected times. Results collected from the erosion plots demonstrate that runoff and soil losses over distances of <2 m can be significantly reduced by up to 50 per cent with cryptogam cover, compared to maize-only canopies. Mean runoff for all storm events sampled from plot types A, B and C were 3·4 l m−2, 1·6 l m−2 and 1·5 l m−2 respectively. For soil loss, the results were 21·7 g m−2, 11·3 g m−2 and 10·2 g m−2 respectively. Therefore, cryptogams would appear to offer a similar degree of protection to the soil surface from runoff and raindrop erosion, to that afforded by weed cover. Weed and cryptogam covers protect the soil surface from rainfall kinetic energies and work to preserve surface microtopographies, depressional storage and surface water detention. Terminal infiltration rates taken at the end of the monitored period showed that well developed maize- and cryptogam-covered soil surfaces (types C) have a mean terminal infiltration rate of 35·0 mm h−1 compared to 44·5 mm h−1 for comparable maize- and weed-covered soil surfaces (types B), and 15·5 mm h−1 for maize-only soil surfaces (types A). These results show that cryptogams and weeds also have relatively higher infiltration rates than comparable maize-only covered plots, devoid of groundcover. The findings in this study may have implications for traditional weed management practices used by local hill farmers, which often destroy cryptogam soil coatings two to three times during the maize growing period. However, further work needs to be done to ascertain farmers' understandings of cryptogams. It is hoped that conservationists will benefit from incorporating cryptogams into the design of future soil erosion studies relating to development programmes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
478.
479.
Abstract

This study reports on tower measurements from the intertidal zone taken during the ice‐free period between August 1 and September 20, 1985. Sea and air temperatures showed ranges of 8 and 14°C, respectively, and both were colder during onshore than during offshore winds. Onshore winds were associated with a nearly saturated atmosphere whereas offshore ones were quite dry. Surface albedo was twice as great for low tide as for high tide. The ratio net/solar radiation was 13% less at low tide owing to both the larger albedo and the stronger long‐wave radiation loss. Heat fluxes into the bottom sediments were small with net gains in August and net losses in September. During the day, heat storage in the water was large and positive. This occurred even with the tide out, when the ponded water continued to warm. At night the water gave up heat, both for low and high tide, and especially late in the season. The latent heat flux was always positive and was largest by day during low tide and by night during high tide. The sensible heat flux was positive for onshore winds and often negative for offshore winds. Under all wind directions heat storage constituted 60% of net radiation, the latent heat flux 35% and the remainder was proportioned equally between the sensible heat flux and the flux into the bottom sediments.  相似文献   
480.
Simulations of late 20th and 21st century Arctic cloud amount from 20 global climate models (GCMs) in the Coupled Model Intercomparison Project phase 3 (CMIP3) dataset are synthesized and assessed. Under recent climatic conditions, GCMs realistically simulate the spatial distribution of Arctic clouds, the magnitude of cloudiness during the warmest seasons (summer–autumn), and the prevalence of low clouds as the predominant type. The greatest intermodel spread and most pronounced model error of excessive cloudiness coincides with the coldest seasons (winter–spring) and locations (perennial ice pack, Greenland, and the Canadian Archipelago). Under greenhouse forcing (SRES A1B emissions scenario) the Arctic is expected to become cloudier, especially during autumn and over sea ice, in tandem with cloud decreases in middle latitudes. Projected cloud changes for the late 21st century depend strongly on the simulated modern (late 20th century) annual cycle of Arctic cloud amount: GCMs that correctly simulate more clouds during summer than winter at present also tend to simulate more clouds in the future. The simulated Arctic cloud changes display a tripole structure aloft, with largest increases concentrated at low levels (below 700 hPa) and high levels (above 400 hPa) but little change in the middle troposphere. The changes in cloud radiative forcing suggest that the cloud changes are a positive feedback annually but negative during summer. Of potential explanations for the simulated Arctic cloud response, local evaporation is the leading candidate based on its high correlation with the cloud changes. The polar cloud changes are also significantly correlated with model resolution: GCMs with higher spatial resolution tend to produce larger future cloud increases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号