首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   864篇
  免费   24篇
  国内免费   9篇
测绘学   24篇
大气科学   60篇
地球物理   229篇
地质学   229篇
海洋学   59篇
天文学   233篇
综合类   5篇
自然地理   58篇
  2022年   3篇
  2021年   6篇
  2020年   10篇
  2019年   10篇
  2018年   17篇
  2017年   12篇
  2016年   15篇
  2015年   15篇
  2014年   26篇
  2013年   45篇
  2012年   41篇
  2011年   42篇
  2010年   29篇
  2009年   43篇
  2008年   41篇
  2007年   46篇
  2006年   30篇
  2005年   37篇
  2004年   55篇
  2003年   32篇
  2002年   40篇
  2001年   31篇
  2000年   32篇
  1999年   24篇
  1998年   24篇
  1997年   12篇
  1996年   14篇
  1995年   8篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1986年   7篇
  1985年   8篇
  1984年   9篇
  1983年   15篇
  1982年   11篇
  1981年   5篇
  1980年   9篇
  1979年   13篇
  1978年   5篇
  1977年   8篇
  1976年   7篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1961年   2篇
排序方式: 共有897条查询结果,搜索用时 15 毫秒
451.
Photosystem II (PSII) herbicides are used in large quantities on agricultural lands adjoining the Great Barrier Reef (GBR). Routine monitoring at 14 sites in inshore waters of the GBR using passive sampling techniques detected diuron (32-94% of sampling periods) at maximum concentrations of 1.7-430ng L(-1) in the relatively pristine Cape York Region to the Mackay Whitsunday Region, respectively. A PSII herbicide equivalent (PSII-HEq) index developed as an indicator for reporting was dominated by diuron (average contribution 89%) and typically increased during the wet season. The maximum PSII-HEq indicates the potential for photosynthetic inhibition of diatoms, seagrass and coral-symbionts. PSII herbicides were significantly positively correlated with remotely sensed coloured dissolved organic matter, a proxy for freshwater extent. Combining these methods provides for the first time the potential to cost-effectively monitor improvements in water quality entering the GBR with respect to exposure to PSII herbicides.  相似文献   
452.
453.
Surfzone bathymetry often is resolved poorly in time because watercraft surveys cannot be performed when waves are large, and remote sensing techniques have limited vertical accuracy. However, accurate high-frequency bathymetric information at fixed locations can be obtained from altimeters that sample nearly continuously, even during storms. A method is developed to generate temporally and spatially dense maps of evolving surfzone bathymetry by updating infrequent spatially dense watercraft surveys with the bathymetric change measured by a spatially sparse array of nearly continuously sampling altimeters. The update method is applied to observations of the evolution of shore-perpendicular rip current channels (dredged in Duck, NC, 2012) and shore-parallel sandbars (observed in Duck, NC, 1994). The updated maps are compared with maps made by temporally interpolating the watercraft surveys, and with maps made by spatially interpolating the altimeter measurements at any given time. Updated maps of the surfzone rip channels and sandbars are more accurate than maps obtained by using either only watercraft surveys or only the altimeter measurements. Hourly altimeter-updated bathymetric estimates of five rip channels show rapid migration and infill events not resolved by watercraft surveys alone. For a 2-month observational record of sandbars, altimeter-updated maps every 6 h between nearly daily surveys improve the time resolution of rapid bar-migration events.  相似文献   
454.
455.
Navigating marine electromagnetic transmitters using dipole field geometry   总被引:3,自引:0,他引:3  
The marine controlled source electromagnetic (CSEM) technique has been adopted by the hydrocarbon industry to characterize the resistivity of targets identified from seismic data prior to drilling. Over the years, marine controlled source electromagnetic has matured to the point that four‐dimensional or time lapse surveys and monitoring could be applied to hydrocarbon reservoirs in production, or to monitor the sequestration of carbon dioxide. Marine controlled source electromagnetic surveys have also been used to target shallow resistors such as gas hydrates. These novel uses of the technique require very well constrained transmitter and receiver geometry in order to make meaningful and accurate geologic interpretations of the data. Current navigation in marine controlled source electromagnetic surveys utilize a long base line, or a short base line, acoustic navigation system to locate the transmitter and seafloor receivers. If these systems fail, then rudimentary navigation is possible by assuming the transmitter follows in the ship's track. However, these navigational assumptions are insufficient to capture the detailed orientation and position of the transmitter required for both shallow targets and repeat surveys. In circumstances when acoustic navigation systems fail we propose the use of an inversion algorithm that solves for transmitter geometry. This algorithm utilizes the transmitter's electromagnetic dipole radiation pattern as recorded by stationary, close range (<1000 m), receivers in order to model the geometry of the transmitter. We test the code with a synthetic model and validate it with data from a well navigated controlled source electromagnetic survey over the Scarborough gas field in Australia.  相似文献   
456.
A significant degree of mass segregation inconsistent with the effects of standard two-body relaxation has been observed in a number of young star clusters. In this paper we present the results of a survey of N-body simulations aimed at exploring the origin and the dynamical evolution of young mass-segregated star clusters. Our simulations show that large segregated clusters can form from the merger of small clumps that are either initially segregated or in which segregation is produced before the merger is complete; the large cluster produced at the end of the merger process inherits the progenitor clumps’ segregation. We show that, in a young mass-segregated cluster, the effect of early mass loss associated with stellar evolution is, in general, more destructive than for an unsegregated cluster with the same density profile, and leads to shorter lifetimes, a faster initial evolution towards less-concentrated structure and a faster flattening of the stellar initial mass function.  相似文献   
457.
We have performed a simulation of a next generation sky survey’s (Pan-STARRS 1) efficiency for detecting Earth-impacting asteroids. The steady-state sky-plane distribution of the impactors long before impact is concentrated towards small solar elongations (Chesley, S.R., Spahr T.B., 2004. In: Belton, M.J.S., Morgan, T.H., Samarashinha, N.H., Yeomans, D.K. (Eds.), Mitigation of Hazardous Comets and Asteroids. Cambridge University Press, Cambridge, pp. 22-37) but we find that there is interesting and potentially exploitable behavior in the sky-plane distribution in the months leading up to impact. The next generation surveys will find most of the dangerous impactors (>140 m diameter) during their decade-long survey missions though there is the potential to miss difficult objects with long synodic periods appearing in the direction of the Sun, as well as objects with long orbital periods that spend much of their time far from the Sun and Earth. A space-based platform that can observe close to the Sun may be needed to identify many of the potential impactors that spend much of their time interior to the Earth’s orbit. The next generation surveys have a good chance of imaging a bolide like 2008 TC3 before it enters the atmosphere but the difficulty will lie in obtaining enough images in advance of impact to allow an accurate pre-impact orbit to be computed.  相似文献   
458.
Imaging of the heliosphere is a burgeoning area of research. As a result, it is awash with new results, using novel applications, and is demonstrating great potential for future research in a wide range of topical areas. The STEREO (Solar TErrestrial RElations Observatory) Heliospheric Imager (HI) instruments are at the heart of this new development, building on the pioneering observations of the SMEI (Solar Mass Ejection Imager) instrument aboard the Coriolis spacecraft. Other earlier heliospheric imaging systems have included ground-based interplanetary scintillation (IPS) facilities and the photometers on the Helios spacecraft. With the HI instruments, we now have routine wide-angle imaging of the inner heliosphere, from vantage points outside the Sun-Earth line. HI has been used to investigate the development of coronal mass ejections (CMEs) as they pass through the heliosphere to 1 AU and beyond. Synoptic mapping has also allowed us to see graphic illustrations of the nature of mass outflow as a function of distance from the Sun – in particular, stressing the complexity of the near-Sun solar wind. The instruments have also been used to image co-rotating interaction regions (CIRs), to study the interaction of comets with the solar wind and CMEs, and to witness the impact of CMEs and CIRs on planets. The very nature of this area of research – which brings together aspects of solar physics, space-environment physics, and solar-terrestrial physics – means that the research papers are spread among a wide range of journals from different disciplines. Thus, in this special issue, it is timely and appropriate to provide a review of the results of the first two years of the HI investigations.  相似文献   
459.
Simulations of late 20th and 21st century Arctic cloud amount from 20 global climate models (GCMs) in the Coupled Model Intercomparison Project phase 3 (CMIP3) dataset are synthesized and assessed. Under recent climatic conditions, GCMs realistically simulate the spatial distribution of Arctic clouds, the magnitude of cloudiness during the warmest seasons (summer–autumn), and the prevalence of low clouds as the predominant type. The greatest intermodel spread and most pronounced model error of excessive cloudiness coincides with the coldest seasons (winter–spring) and locations (perennial ice pack, Greenland, and the Canadian Archipelago). Under greenhouse forcing (SRES A1B emissions scenario) the Arctic is expected to become cloudier, especially during autumn and over sea ice, in tandem with cloud decreases in middle latitudes. Projected cloud changes for the late 21st century depend strongly on the simulated modern (late 20th century) annual cycle of Arctic cloud amount: GCMs that correctly simulate more clouds during summer than winter at present also tend to simulate more clouds in the future. The simulated Arctic cloud changes display a tripole structure aloft, with largest increases concentrated at low levels (below 700 hPa) and high levels (above 400 hPa) but little change in the middle troposphere. The changes in cloud radiative forcing suggest that the cloud changes are a positive feedback annually but negative during summer. Of potential explanations for the simulated Arctic cloud response, local evaporation is the leading candidate based on its high correlation with the cloud changes. The polar cloud changes are also significantly correlated with model resolution: GCMs with higher spatial resolution tend to produce larger future cloud increases.  相似文献   
460.
Mesopelagic fishes represent an important component of the marine food web due to their global distributions, high abundances and ability to transport organic material throughout a large part of the water column. This study combined stable isotope (SIAs) and gut content analyses (GCAs) to characterize the trophic structure of mesopelagic fishes in the North‐Central Gulf of Mexico. Additionally, this study examined whether mesopelagic fishes utilized chemosynthetic energy from cold seeps. Specimens were collected (9–25 August 2007) over three deep (>1,000 m) cold seeps at discrete depths (surface to 1,503 m) over the diurnal cycle. GCA classified 31 species (five families) of mesopelagic fishes into five feeding guilds: piscivores, large crustacean consumers, copepod consumers, generalists and mixed zooplanktivores. However, these guilds were less clearly defined based on stable isotope mixing model (MixSIAR) results, suggesting diets may be more mixed over longer time periods (weeks–months) and across co‐occurring species. Copepods were likely important for the majority of mesopelagic fishes, consistent with GCA (this study) and previous literature. MixSIAR results also identified non‐crustacean prey items, including salps and pteropods, as potentially important prey items for mesopelagic fishes, including those fishes not analysed in GCA (Sternoptyx spp. and Melamphaidae). Salps and other soft‐bodied species are often missed in GCAs. Mesopelagic fishes had δ13C results consistent with particulate organic matter serving as the baseline organic carbon source, fueling up to three trophic levels. Fishes that undergo diel vertical migration were depleted in 15N relative to weak migrators, consistent with depth‐specific isotope trends in sources and consumers, and assimilation of 15N‐depleted organic matter in surface waters. Linear correlations between fish size and δ15N values suggested ontogenetic changes in fish diets for several species. While there was no direct measure of mesopelagic fishes assimilating chemosynthetic material, detection of infrequent consumption of this food resource may be hindered by the assimilation of isotopically enriched photosynthetic organic matter. By utilizing multiple dietary metrics (e.g. GCA, δ13C, δ15N, MixSIAR), this study better defined the trophic structure of mesopelagic fishes and allowed for insights on feeding, ultimately providing useful baseline information from which to track mesopelagic trophodynamics over time and space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号