首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   17篇
  国内免费   2篇
测绘学   4篇
大气科学   27篇
地球物理   66篇
地质学   90篇
海洋学   23篇
天文学   11篇
综合类   1篇
自然地理   21篇
  2024年   1篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   12篇
  2017年   7篇
  2016年   15篇
  2015年   9篇
  2014年   8篇
  2013年   33篇
  2012年   18篇
  2011年   23篇
  2010年   12篇
  2009年   16篇
  2008年   11篇
  2007年   6篇
  2006年   12篇
  2005年   9篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有243条查询结果,搜索用时 15 毫秒
91.
Kerlingarfjöll central volcano is Iceland’s second largest outcrop of Quaternary rhyolite and is part of the Icelandic Western Rift Zone. Geochemical and Ar/Ar age data show that at least 21 different rhyolite eruptions have taken place at Kerlingarfjöll over the last 350 ka. Ar/Ar dating was carried out on samples of obsidian which showed variable reproducibility, illustrating the difficulty in dating young Icelandic volcanics. Nevertheless, reasonable estimates of eruption age have been derived for a number of eruptive units that are consistent with observed stratigraphy, enabling an understanding of the temporal evolution of Kerlingarfjöll. Two rhyolite magma types are present. The first is an older, low-Nb rhyolite that was erupted episodically along a cryptic curved fracture system, to form a discontinuous ring of rhyolite mountains, between 350 and 250 ka. This discontinuous ring is similar to structures observed at other volcanoes in Iceland, suggesting that the development of a curved fracture that acts as a pathway for episodic silicic eruptions is a feature of central volcano development. The second magma is a younger, high-Nb rhyolite that was erupted episodically between 250 and 68 ka in the northern part of Kerlingarfjöll, forming two clusters, both of which have areas of intense hydrothermal activity. Repose periods for rhyolite volcanism are thought to be on the order of tens of thousands of years, and it is possible that Kerlingarfjöll will erupt rhyolite again in the future.  相似文献   
92.
The reconstruction of former mountain glaciers has long been used to examine the implications of rapid climate shifts, for example at the last glacial–interglacial transition, and for evaluating asynchronous behaviour of mountain glaciers compared with mid‐latitude ice sheets during the Late Quaternary. Glacier reconstruction has also been used as a source of palaeoclimatic information, based on the recognition of empirical relationships between glaciers and climate. This paper reviews the application and implications of a recently revised method of glacier reconstruction (Carr and Coleman, 2007 ), based around glaciological principles of mass‐balance. This study examines how this approach can be used to test geomorphological interpretations of former mountain glaciation and also to infer precipitation fields at sites of former glaciation. Sites of Younger Dryas niche and icefield glaciation in the British Isles demonstrate how this method can verify interpretations of marginal glaciation and begin to understand the different behaviour of outlet glaciers within the same environmental regime. Examination of a site of former niche glaciation in Southern Africa demonstrates how glacier reconstruction may be used to infer annual and seasonal precipitation values and strongly supports the idea that winter precipitation in Lesotho and SE South Africa was substantially greater than present‐day values during the last glacial cycle. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
93.
We studied the internal lake processes that control the spatial distribution and characteristics of modern sediments at the ICDP (International Continental Scientific Drilling Program) deep drilling site in Laguna Potrok Aike, southern Patagonia, Argentina. Sediment distribution patterns were investigated using a dense grid of 63 gravity cores taken throughout the lake basin and 40 additional shoreline samples. Analysis of the surficial sediment distribution points to distinct internal depositional dynamics induced by wind-driven lake internal currents. Distribution maps illustrate that the spatial characteristics of analysed variables are linked to high erosional wave activity. Persistent wave action and littoral erosion along all shores, especially the eastern shore, is caused by prevailing Southern Hemispheric Westerlies. Several sediment variables (grain size, benthic diatoms, total inorganic carbon and calcium) indicate re-suspension of littoral sediment followed by re-distribution to profundal accumulation areas near the eastern shore. Variations within the catchment influence sediment characteristics in the north-eastern bay. That area is characterized by different mineralogical and sedimentological conditions as well as greater accumulation of pollen, inorganic carbon and diatoms. These findings are related to the influence of episodic inflow into this bay. Spatial differences in stable isotope values throughout the lake suggest that ephemeral tributaries around the lake basin may also contribute to the detected spatial sediment variations.  相似文献   
94.
The salinization of rivers, as indicated by salinity increases in the downstream direction, is characteristic of arid and semiarid regions throughout the world. Historically, salinity increases have been attributed to various mechanisms, including (1) evaporation and concentration during reservoir storage, irrigation, and subsequent reuse; (2) displacement of shallow saline ground water during irrigation; (3) erosion and dissolution of natural deposits; and/or (4) inflow of deep saline and/or geothermal ground water (ground water with elevated water temperature). In this study, investigation of salinity issues focused on identification of relative salinity contributions from anthropogenic and natural sources in the Lower Rio Grande in the New Mexico-Texas border region. Based on the conceptual model of the system, the various sources of water and, therefore, salinity to the Lower Rio Grande were identified, and a sampling plan was designed to characterize these sources. Analysis results for boron (delta(11)B), sulfur (delta(34)S), oxygen (delta(18)O), hydrogen (delta(2)H), and strontium ((87)Sr/(86)Sr) isotopes, as well as basic chemical data, confirmed the hypothesis that the dominant salinity contributions are from deep ground water inflow to the Rio Grande. The stable isotopic ratios identified the deep ground water inflow as distinctive, with characteristic isotopic signatures. These analyses indicate that it is not possible to reproduce the observed salinization by evapotranspiration and agricultural processes alone. This investigation further confirms that proper application of multiple isotopic and geochemical tracers can be used to identify and constrain multiple sources of solutes in complex river systems.  相似文献   
95.
Establishing the age and crustal nature of exotic terranes and their underlying basements helps to determine their paleogeographic origin and tectonic histories. We present U–Pb ages of zircons and Sm–Nd whole rock isotopic data for volcanic and plutonic rocks of the Carolina terrane, one of several peri-Gondwanan terranes that were accreted to the margins of the circum-Atlantic continents during the Paleozoic. Volcanism in this subduction-related arc culminated in the eruption of the Morrow Mountain rhyolite, at ca. 540 Ma; thus, magmatism in the Carolina terrane ceased at the beginning of the Cambrian. The presence of inherited zircons and non-juvenile depleted mantle model ages of Carolina slate belt rocks favor a basement that is, at least in part, composed of evolved continental crust. Ages of inherited xenocrystic zircons cluster at ca. 1000, 2100 and 2500 Ma. These ages, in addition to volcanism at ca. 618–540 Ma, correlate best with well-known tectonic events in present-day northern South America. Specifically, the Orinoquian-Sunsas, the Trans-Amazonian and the Central Amazonian orogenic zones are likely candidates for potential basement correlatives to the Carolina terrane. Sm–Nd isotopic signatures vary significantly, but permit assimilation of Orinoquian age (1000 Ma) crust by magmas derived from the depleted mantle in a subduction (arc-related) setting. Our findings are also consistent with proposed correlations between the Carolina terrane and Avalonia which is likewise believed to have formed along the northern margin of present-day South America.  相似文献   
96.
The subarctic North Pacific is a high nitrate-low chlorophyll (HNLC) region, where phytoplankton growth rates, especially those of diatoms, are enhanced when micronutrient Fe is added. Accordingly, it has been suggested that glacial Fe-laden dust might have increased primary production in this region. This paper reviews published palaeoceanographic records of export production over the last 800 kyrs from the open North Pacific (north of ∼35°N). We find different patterns of export production change over time in the various domains of the North Pacific (NW and NE subarctic gyres, the marginal seas and the transition zone). However, there is no compelling evidence for an overall increase in productivity during glacials in the subarctic region, challenging the paradigm that dust-born Fe fertilization of this region has contributed to the glacial draw down of atmospheric CO2. Potential reasons for the lack of increased glacial export production include the possibility that Fe-fertilization rapidly drives the ecosystem towards limitation by another nutrient. This effect would have been exacerbated by an even more stable mixed layer compared to today. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
97.
98.
We measured Ca stable isotope ratios (δ44/40Ca) in an ancient (2 My), hyperarid soil where the primary source of mobile Ca is atmospheric deposition. Most of the Ca in the upper meter of this soil (3.5 kmol m−2) is present as sulfates (2.5 kmol m−2), and to a lesser extent carbonates (0.4 kmol m−2). In aqueous extracts of variably hydrated calcium sulfate minerals, δ44/40CaE values (vs. bulk Earth) increase with depth (1.4 m) from a minimum of −1.91‰ to a maximum of +0.59‰. The trend in carbonate-δ44/40Ca in the top six horizons resembles that of sulfate-δ44/40Ca, but with values 0.1-0.6‰ higher. The range of observed Ca isotope values in this soil is about half that of δ44/40Ca values observed on Earth. Linear correlation among δ44/40Ca, δ34S and δ18O values indicates either (a) a simultaneous change in atmospheric input values for all three elements over time, or (b) isotopic fractionation of all three elements during downward transport. We present evidence that the latter is the primary cause of the isotopic variation that we observe. Sulfate-δ34S values are positively correlated with sulfate-δ18O values (R2 = 0.78) and negatively correlated with sulfate δ44/40CaE values (R2 = 0.70). If constant fractionation and conservation of mass with downward transport are assumed, these relationships indicate a δ44/40Ca fractionation factor of −0.4‰ in CaSO4. The overall depth trend in Ca isotopes is reproduced by a model of isotopic fractionation during downward Ca transport that considers small and infrequent but regularly recurring rainfall events. Near surface low Ca isotope values are reproduced by a Rayleigh model derived from measured Ca concentrations and the Ca fractionation factor predicted by the relationship with S isotopes. This indicates that the primary mechanism of stable isotope fractionation in CaSO4 is incremental and effectively irreversible removal of an isotopically enriched dissolved phase by downward transport during small rainfall events.  相似文献   
99.
100.
Tunnel valleys are common throughout the terrain of the Saginaw Lobe of the Laurentide Ice Sheet in southern Michigan. The set of valleys described in this paper is regularly spaced in a radial pattern behind the Kalamazoo Moraine, an ice‐marginal position formed during retreat from the Last Glacial Maximum. These valleys are divided into proximal and distal groups lying north and south, respectively, of a major river valley that cross‐cuts the tunnel valleys at right angles. Based on a series of rotasonic borings and core analysis, the proximal valleys are shallow, contain minimal sediment fill, and overlie fine‐grained diamicton and glaciolacustrine sediment, whereas the distal valleys are deeply incised into the substrate and are partially filled with coarse sediment. The distal valleys terminate within a broad zone of high‐relief, hummocky topography representing stagnation and collapse behind the Kalamazoo ice margin. The proximal valleys occur within a more subdued landscape located farther from the ice margin. Although some elements of existing genetic models are consistent with these valleys, none appears to be completely compatible with their stratigraphy and morphology. Initial incision of the valleys could have involved short‐lived moderate‐ to high‐discharge flows, followed by deposition during or after the events. The deep incision and thick, coarse sediment in distal valleys in the stagnant marginal zone probably involved supraglacial meltwater draining to the bed as the margin downwasted. Fining‐upward eskers inset into the valleys were formed by flows of declining energy in small late‐stage conduits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号