首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   13篇
  国内免费   2篇
测绘学   4篇
大气科学   27篇
地球物理   66篇
地质学   90篇
海洋学   23篇
天文学   11篇
综合类   1篇
自然地理   21篇
  2024年   1篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   12篇
  2017年   7篇
  2016年   15篇
  2015年   9篇
  2014年   8篇
  2013年   33篇
  2012年   18篇
  2011年   23篇
  2010年   12篇
  2009年   16篇
  2008年   11篇
  2007年   6篇
  2006年   12篇
  2005年   9篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有243条查询结果,搜索用时 0 毫秒
31.
Time-relative positioning is a recent method for processing GPS phase observations. The operational method undertaken in this paper consists of the following steps: first, recording phase observations at a station of known coordinates; second, moving the GPS receiver to an unknown station (which can be located up to a few hundred meters away, dependint on what type of transportation – e. g., walking, motorcycle – is available) while continuously observing carrier phases; and, third, recording phase observations at a second station of unknown coordinates with a single GPS receiver. To obtain the position of the unknown station relative to the first (known) station, the processing method uses combined observations taken at two different epochs and two different stations with the same receiver. For this reason, the errors that vary between two epochs must be taken into account in an appropriate way, especially errors in satellite clock corrections and ephemerides, and errors related to tropospheric and ionospheric delays. Ionospheric modeling using IONEX files (the ionospheric maps calculated by the International GPS Service) was also tested to correct L1 phase observations. This method has been used to calculate short vectors with an accuracy of a few centimeters (for a processing interval of 30 s) using a single civil GPS receiver. ? 2001 John Wiley & Sons, Inc.  相似文献   
32.
Optical absorption spectra are presented for taramellite, traskite and neptunite, all of which have both Fe2+ and Ti4+ as major elements. The spectra of each of these minerals are dominated by a single, intense absorption band in the 415 to 460 nm region with 7000 to 9000 cm?1 halfwidth. These transitions, assigned to Fe2+-Ti4+ intervalence charge transfer, showed little difference in intensity at 80 and 300 K and have molar absorptivities which range from ~100 to ~1300 M?1 cm?1. The Fe2+-Ti4+ absorptions in these standards generally compare well to other mineral spectra in which Fe2+ — Ti4+ intervalence absorption has previously been proposed with the exception of the most cited example, blue corundum.  相似文献   
33.
Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre-fire conditions. This research examines the connectivity of post-fire runoff and sediment from hillslopes (< 1.5 ha; n = 31) and catchments (< 1000 ha; n = 10) within two watersheds (< 1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post-fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration-excess overland flow, high sediment yields, in-stream sediment deposition and channel substrate fining. For both storms, hillslope-to-stream sediment delivery ratios and area-normalised cross-sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope-to-stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post-fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.  相似文献   
34.
Changes in the persistence of dry and wet periods are of particular interest for many sectors, as long-term deviations from normal precipitation strongly affect the water availability. Here, an indicator is introduced to explore variability and trends of long-lasting dry and wet periods by using decile based thresholds. The test of three different thresholds for ending those periods revealed only slight influences of the chosen threshold on the spatiotemporal pattern and trends. The methodology of the deciles indicator is illustrated and studied exemplarily for a spatially highly resolved data set for Saxony, Germany within 1901–2010. Within that region decile wet and dry periods, respectively, occur approximately four times within 10 years, last on average 11 months and cover on average more than 35 % of the stations. Several years to decades long periods with particularly frequent and/or long decile dry or wet periods were identified. The computed trends strongly depend upon the analysis period, as frequency, duration and spatial coverage of decile periods show strong variations up to multi-decadal time scales. Nonetheless, there is some indication that dry period coverage increased within the 20th century, while wet period coverage decreased. However, in the most recent decades the long-term trends reversed.  相似文献   
35.
The effects of advection, dispersion, and biological processes on nitrogen and phytoplankton dynamics after a storm event in December 2002 are investigated in an estuary located on the northern New South Wales coast, Australia. Salinity observations for 16 d after the storm are used to estimate hydrodynamic transports for a one-dimensional box model. A biological model with nitrogen limited phytoplankton growth, mussel grazing, and a phytoplankton mortality term is forced by the calculated transports. The model captured important aspects of the temporal and spatial dynamics of the bloom. A quantitative analysis of hydrodynamic and biological processes shows that increased phytoplankton biomass due to elevated nitrogen loads after the storm was not primarily regulated by advection or dispersion in spite of an increase in river flow from <1 to 928×103 m3 d−1. Of the dissolved nitrogen that entered the surface layer of the estuary in the 16 d following the storm event, the model estimated that 28% was lost through exchange with the ocean or bottom layers, while 15% was removed by the grazing of just one mussel species,Xenostrobus securis, on phytoplankton, and 50% was lost through other biological phytoplankton loss processes.X. securis grazing remained an important loss process even when the estimated biological parameters in the model were varied by factors of ± 2. The intertidal mangrove pneumatophore habitat ofX. securis allows filtering of the upper water column from the lateral boundaries when the water column is vertically stratified, exerting top-down control on phytoplankton biomass.  相似文献   
36.
How rock resistance or erodibility affects fluvial landforms and processes is an outstanding question in geomorphology that has recently garnered attention owing to the recognition that the erosion rates of bedrock channels largely set the pace of landscape evolution. In this work, we evaluate valley width, terrace distribution, and bedload provenance in terms of reach scale variation in lithology in the study reach and discuss the implications for landscape evolution in a catchment with relatively flat‐lying stratigraphy and very little uplift. A reach of the Buffalo National River in Arkansas was partitioned into lithologic reaches and the mechanical and chemical resistance of the main lithologies making up the catchment was measured. Valley width and the spatial distribution of terraces were compared among the different lithologic reaches. The surface grain size and provenance of coarse (2–90 mm) sediment of both modern gravel bars and older terrace deposits that make up the former bedload were measured and defined. The results demonstrate a strong impact of lithology upon valley width, terrace distribution, and bedload provenance and therefore, upon landscape evolution processes. Channel down‐cutting through different lithologies creates variable patterns of resistance across catchments and continents. Particularly in post‐tectonic and non‐tectonic landscapes, the variation in resistance that arises from the exhumation of different rocks in channel longitudinal profiles can impact local base levels, initiating responses that can be propagated through channel networks. The rate at which that response is transmitted through channels is potentially amplified and/or mitigated by differences between the resistance of channel beds and bedload sediment loads. In the study reach, variation in lithologic resistance influences the prevalence of lateral and vertical processes, thus producing a spatial pattern of terraces that reflects rock type rather than climate, regional base level change, or hydrologic variability. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
37.
38.
To enhance global water use assessment, the WaterGAP3 model was improved for back-calculating domestic, manufacturing and thermoelectric water uses until 1950 for 177 countries. Model simulations were carried-out on a national scale to estimate water withdrawals and consumption as well as cooling water required for industrial processes and electricity production. Additionally, the amount of treated and untreated wastewater as generated by the domestic and manufacturing sectors was modeled. In the view of data availability, model simulations are based on key socio-economic driving forces and thermal electricity production. Technological change rates were derived from statistical records in order to consider developments in water use efficiency, which turned out to have a crucial role in water use dynamics. Simulated domestic and industrial water uses increased from ca. 300 km3 in 1950 to 1345 km3 in 2010, 12% of which were consumed and 88% of which were discharged back into freshwater bodies. The amount of domestic and manufacturing wastewater increased considerably over the last decade, but only half of it was untreated. The downscaling of the untreated wastewater volume to river basin scale indicates a matter of concern in East and Southeast Asia, Northern Africa, and Eastern and Southern Europe. In order to reach the Millennium Development Goals, securing water supply and the reduction of untreated wastewater discharges should be amongst the priority actions to be undertaken. Population growth and increased prosperity have led to increasing water demands. However, societal and political transformation processes as well as policy regulations resulting in new water-saving technologies and improvements counteract this development by slowing down and even reducing global domestic and industrial water uses.  相似文献   
39.
Eastward-propagating patterns in anomalous potential temperature and salinity of the Southern Ocean are analyzed in the output of a 1000-year simulation of the global coupled atmosphere–ocean GCM ECHO-G. Such features can be associated with the so-called Antarctic Circumpolar Wave (ACW). It is found that time–longitude diagrams that have traditionally been used to aid the visualization of the ACW are strongly influenced by the width of the bandpass time filtering. This is due to the masking of considerable low-frequency variability that occurs over a broad range of time scales. Frequency–wavenumber analysis of the ACW shows that the eastward-propagating waves do have preferred spectral peaks, but that both the period and wavenumber change erratically when comparing different centuries throughout the simulation. The variability of the ACW on a variety of time scales from interannual to centennial suggests that the waiting time for a sufficient observational record to determine the time scale of variability of the real world ACW (and the associated decadal time scale predictability of climate for southern landmasses) will be a very long one.Responsible Editor: Dirk Olbers  相似文献   
40.
Changes in seasonality and form of precipitation alter the structure and function of grassland and steppe ecosystems and pose challenges for land management and crop production in regions like the Northern Great Plains, North America. This research uses isotopic composition of water (δ18O and δ2H) to explore the sources and fate of soil water in lower-elevation agricultural areas of the Judith River watershed, in the headwaters of the Missouri River, USA. Extensive non-irrigated cereal crop production in this area occurs on well-drained soils and depends on careful water management. Our observations indicate that colder precipitation contributes isotopically distinct water to cultivated terrace soils relative to downgradient groundwaters and streams. Riparian waters also exhibit a higher fraction of contributions from colder precipitation relative to terrace groundwaters and streams. Apparent contributions from colder precipitation in terrace and riparian soil waters suggest that snowmelt is a key component of the water supply to these systems. Riparian waters also show evidence of evaporation suggesting that water spends sufficient time in some ponds and open channels in the riparian corridor to reflect fractionation by evaporation. The evolution of water isotopic composition from soils to shallow aquifers to stream corridors indicates source water partitioning as precipitation moves through this semi-arid agricultural landscape. The apparent mixing processes evident in this evolution reveal source water dynamics that are necessary to understand plant transpiration, solute processing, and contaminant leaching processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号