首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   4篇
  国内免费   3篇
测绘学   1篇
大气科学   8篇
地球物理   19篇
地质学   19篇
海洋学   19篇
天文学   13篇
综合类   1篇
自然地理   2篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   5篇
  2012年   7篇
  2011年   4篇
  2010年   3篇
  2009年   10篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
  1981年   1篇
排序方式: 共有82条查询结果,搜索用时 31 毫秒
61.
62.
Morphological and chronological studies have been carried out on coralline algal buildups (“coralligène”) situated between 10 and 60 m depth near Marseilles, and in Corsica (France). Despite the presence of occasionally sizeable quantities of iron hydroxide, these constructions prove to be a reliable material for radiocarbon dating. Ages obtained using this method range from 640±120 yrs B.P. (Corsica, Scandola Natural Reserve, −15 m) to 7760±80 yrs B.P. (Marseilles, Grand Congloue, −52 m). Internal erosion surfaces within the buildups give evidence of discontinuous development. The accumulation rate of the coralligène constructions is very low (0.006–0.83 mm yr−1 according to the depth and time period). The higher values (0.53–0.83 mm yr−1) were recorded for the deeper constructions. They correspond to a period between 8000 and 6000 yrs B.P. After 6000 yrs B.P., the only appreciable accumulation rates (0.11–0.42 mm yr−1) were recorded for constructions situated between 10 and 35 m depth, whereas the accumulation rates of deep coralligène (> 50 m) appear to be low or zero. The age of the large constructions (overhang: 80 cm in width) is positively correlated with depth (r = 0.95; p < 0.005). Their development occurred during the Flandrian transgression. The oldest structures, today situated at 50 to 60 m depth, started to develop when water depth was probably no greater than 10 to 15 m. Apart from in strongly shaded fissures on rocky coasts and areas subjected to heavy sedimentation, the main framework building algal species was initially Mesophyllum lichenoides (Ellis) Lemoine, a high tolerant species to light, hydrodynamic energy and temperature. With the rise in sea level, the coralligène structure gradually became available to other less tolerant algal species (Lithophyllum, Lithothamnion), and the crustforming population diversified. Because of the good preservation of coralligène structures, the reliability of radiocarbon dating and the correlation between the age and bathymetric position of the large coralligène structures (except in areas of heavy sedimentation and fissures in shallow rocky coasts), these buildups are considered to be of use as biological indicators of variations in sea level.  相似文献   
63.
In hydraulic fracturing experiments, perforation shots excite body and tube waves that sample, and thus can be used to characterize, the surrounding medium. While these waves are routinely employed in borehole operations, their resolving power is limited by the experiment geometry, the signal‐to‐noise ratio, and their frequency content. It is therefore useful to look for additional, complementary signals that could increase this resolving power. Tube‐to‐body‐wave conversions (scattering of tube to compressional or shear waves at borehole discontinuities) are one such signal. These waves are not frequently considered in hydraulic fracture settings, yet they possess geometrical and spectral attributes that greatly complement the resolution afforded by body and tube waves alone. Here, we analyze data from the Jonah gas field (Wyoming, USA) to demonstrate that tube‐to‐shear‐wave conversions can be clearly observed in the context of hydraulic fracturing experiments. These waves are identified primarily on the vertical and radial components of geophones installed in monitoring wells surrounding a treatment well. They exhibit a significantly lower frequency content (10–100 Hz) than the primary compressional waves (100–1000 Hz). Tapping into such lower frequencies could help to better constrain velocity in the formation, thus allowing better estimates of fracture density, porosity and permeability. Moreover, the signals of tube‐to‐shear‐wave conversion observed in this particular study provide independent estimates of the shear wave velocity in the formation and of the tube wave velocity in the treatment well.  相似文献   
64.
In situ measurement of grain‐scale fluvial morphology is important for studies on grain roughness, sediment transport and the interactions between animals and the geomorphology, topics relevant to many river practitioners. Close‐range digital photogrammetry (CRDP) and terrestrial laser scanning (TLS) are the two most common techniques to obtain high‐resolution digital elevation models (DEMs) from fluvial surfaces. However, field application of topography remote sensing at the grain scale is presently hindered mainly by the tedious workflow challenges that one needs to overcome to obtain high‐accuracy elevation data. A recommended approach for CRDP to collect high‐resolution and high‐accuracy DEMs has been developed for gravel‐bed flume studies. The present paper investigates the deployment of the laboratory technique on three exposed gravel bars in a natural river environment. In contrast to other approaches, having the calibration carried out in the laboratory removes the need for independently surveyed ground‐control targets, and makes for an efficient and effective data collection in the field. Optimization of the gravel‐bed imagery helps DEM collection, without being impacted by variable lighting conditions. The benefit of a light‐weight three‐dimensional printed gravel‐bed model for DEM quality assessment is shown, and confirms the reliability of grain roughness data measured with CRDP. Imagery and DEM analysis evidences sedimentological contrasts between gravel bars within the reach. The analysis of the surface elevations shows the effect variable grain‐size and sediment sorting have on the surface roughness. By plotting the two‐dimensional structure functions and surface slopes and aspects we identify different grain arrangements and surface structures. The calculation of the inclination index allows determining the surface‐forming flow direction(s). We show that progress in topography remote sensing is important to extend our knowledge on fluvial morphology processes at the grain scale, and how a technique customized for use by fluvial geomorphologists in the field benefits this progress. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
65.
A field study was carried out to investigate the development of alternate bars in a secondary channel of the Loire River (France) as a function of discharge variations. We combined frequent bathymetric surveys, scour chains and stratigraphical analysis of deposits with measurements and modelling of flow dynamics. The channel exhibited migrating bars, non‐migrating bars and superimposed dunes. Possible mechanisms of bar initiation were found to be chutes associated with changes of bank direction and instability resulting from interactions between existing bars during the fall in water level after floods. We propose that the reworking of bar sediments during low flows (high width‐to‐depth ratio β), reinforced by high values of the Shields mobility parameter, can explain the formation or re‐generation of new alternate migrating bars during a subsequent flood. The migration pattern of the bars was found to be cyclic and to depend mainly on (i) channel layout and (ii) the dynamics of superimposed dunes with heights and lengths depending on location and discharge value. For instance, the hysteresis affecting the steepness of dunes influences the flow resistance of the dunes as well as the celerity of migrating bars during flood events. We compare the findings from the field with results from theoretical studies on alternate bars. This gives insight in the phenomena occurring in the complex setting of real rivers, but it also sheds light on the extent to which bar theories based on idealized cases can predict those phenomena. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
66.
67.
In atoll lagoons of French Polynesia, growth and reproduction of pearl oysters are mainly driven by plankton concentration. However, the actual diet of black-lip pearl oysters Pinctada margaritifera in these lagoons is poorly known. To fill this gap, we used the flow through chamber method to measure clearance rates of P. margaritifera in Ahe atoll lagoon (Tuamotu Archipelago, French Polynesia). We found: (i) that pearl oysters cleared plankton at a rate that was positively related to plankton biovolume, (ii) that nanoflagellates were the main source of carbon for the pearl oysters, and (iii) that the quantity and origin of carbon filtrated by pearl oysters was highly dependent on the concentration and composition of plankton. These results provide essential elements for the comprehension of growth and reproduction variability of pearl oysters in atoll lagoons of French Polynesia.  相似文献   
68.
Internal erosion by suffusion can change dramatically the constitutive behavior of granular materials by modifying the fabric of granular materials. In this study, the effect of an internal fluid flow on granular materials is investigated at the material point scale using the numerical coupling between a discrete element method (DEM) and a pore-scale finite volume (PFV) coupling scheme. The influence of the stress state and the hydraulic loading (direction and intensity) on the occurrence of grain transport in dense widely graded granular samples is thus investigated and interpreted in terms of micromechanics. In particular, it is shown that grain transport is increased when the macroscopic flow direction is aligned with the privileged force chain orientation. The stress-induced microstructure modifications are shown to influence the transport distances by controlling the number of rattlers.  相似文献   
69.
Compared to oxygen isotopes, the carbon isotope composition of biogenic carbonates is less commonly used as proxy for palaeoenvironmental reconstructions because shell δ13C is derived from both dissolved inorganic (seawater) and organic carbon sources (food), and interactions between these two pools make it difficult to unambiguously identify any independent effect of either. The main purpose of this study was to demonstrate any direct impact of variable food supply on bivalve shell δ13C signatures, using low/high rations of a 13C-light mixed algal diet fed to 14-month-old (adult) cultured Japanese Crassostrea gigas under otherwise essentially identical in vitro conditions during 3 summer months (May, June and July 2003, seawater temperature means at 16, 18 and 20 °C respectively) in experimental tanks at the Argenton laboratory along the Brittany Atlantic coast of France. At a daily ration of 12% (versus 4%) oyster dry weight, the newly grown part of the shells (hinge region) showed significantly lower δ13C values, by 3.5‰ (high ration: mean of −5.8  ± 1.1‰, n = 10; low ration: mean of −2.3  ± 0.7‰, n = 6; ANOVA Scheffe’s test, p < 0.0001). This can be explained by an enhanced metabolic activity at higher food supply, raising 13C-depleted respiratory CO2 in the extrapallial cavity. Based on these δ13C values and data extracted from the literature, and assuming no carbon isotope fractionation between food and shell, the proportion of shell metabolic carbon would be 26  ± 7 and 5  ± 5% for the high- and low-ration C. gigas shells respectively; with carbon isotope fractionation (arguably more realistic), the corresponding values would be 69  ± 14 and 24  ± 9%. Both groups of cultured shells exhibited lower δ13C values than did wild oysters from Marennes-Ol éron Bay in the study region, which is not inconsistent with an independent influence of diet type. Although there was no significant difference between the two food regimes in terms of δ18O shell values (means of 0.1  ± 0.3 and 0.4  ± 0.2‰ at high and low rations respectively, non-significant Scheffe’s test), a positive δ13C vs. δ18O relationship recorded at high rations supports the interpretation of a progressive temperature-mediated rise in metabolic activity fuelled by higher food supply (in this case reflecting increased energy investment in reproduction), in terms not only of δ13C (metabolic signal) but also of δ18O (seawater temperature signal). Overall, whole-shell δ18O trends faithfully recorded summer/winter variations in seawater temperature experienced by the 17-month-old cultured oysters.  相似文献   
70.
Ocean Dynamics - The dissipation flux coefficient, a measure of the mixing efficiency of a turbulent flow, was computed from microstructure measurements collected with a vertical microstructure...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号