首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   28篇
  国内免费   1篇
测绘学   6篇
大气科学   43篇
地球物理   74篇
地质学   160篇
海洋学   26篇
天文学   65篇
综合类   5篇
自然地理   30篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   9篇
  2018年   15篇
  2017年   14篇
  2016年   15篇
  2015年   15篇
  2014年   12篇
  2013年   25篇
  2012年   14篇
  2011年   24篇
  2010年   23篇
  2009年   34篇
  2008年   22篇
  2007年   24篇
  2006年   20篇
  2005年   21篇
  2004年   16篇
  2003年   9篇
  2002年   11篇
  2001年   8篇
  2000年   11篇
  1999年   7篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1959年   1篇
排序方式: 共有409条查询结果,搜索用时 78 毫秒
331.
Coupled CaCO3 dissolution-otavite (CdCO3) precipitation experiments have been performed to 1) quantify the effect of mineral coatings on dissolution rates, and 2) to explore the possible application of this coupled process to the remediation of polluted waters. All experiments were performed at 25°C in mixed-flow reactors. Various CaCO3 solids were used in the experiments including calcite, aragonite, and ground clam, mussel, and cockle shells. Precipitation was induced by the presence of Cd(NO3)2 in the inlet solution, which combined with aqueous carbonate liberated by CaCO3 dissolution to supersaturate otavite. The precipitation of an otavite layer of less than 0.01 μm in thickness on calcite surfaces decreases its dissolution rate by close to two orders of magnitude. This decrease in calcite dissolution rates lowers aqueous carbonate concentrations in the reactor such that the mixed-flow reactor experiments attain a steady-state where the reactive fluid is approximately in equilibrium with otavite, arresting its precipitation. In contrast, otavite coatings are far less efficient in lowering aragonite, and ground clam, mussel, and cockle shell dissolution rates, which are comprised primarily of aragonite. A steady-state is only attained after the precipitation of an otavite layer of 3-10 μm thick; the steady state CaCO3 dissolution rate is 1-2 orders of magnitude lower than that in the absence of otavite coatings. The difference in behavior is interpreted to stem from the relative crystallographic structures of the dissolving and precipitating minerals. As otavite is isostructural with respect to calcite, it precipitates by epitaxial growth directly on the calcite, efficiently slowing dissolution. In contrast, otavite’s structure is appreciably different from that of aragonite. Thus, it will precipitate by random three dimensional heterogeneous nucleation, leaving some pore space at the otavite-aragonite interface. This pore space allows aragonite dissolution to continue relatively unaffected by thin layers of precipitated otavite. Due to the inefficiency of otavite coatings to slow aragonite and ground aragonite shell dissolution, aragonite appears to be a far better Cd scavenging material for cleaning polluted waste waters.  相似文献   
332.
With an age of ca. 2.7 Ga, greenschist facies volcaniclastic rocks and lamprophyre dikes in the Wawa area (Superior Craton) host the only diamonds emplaced in the Archean available for study today. Nitrogen aggregation in Wawa diamonds ranges from Type IaA to IaB, suggesting mantle residence times of tens to hundreds of millions of years. The carbon isotopic composition (δ13C) of cube diamonds is similar to the accepted mantle value (− 5.0‰). Octahedral diamonds show a slight shift (by + 1.5‰) to isotopically less negative values suggesting a subduction-derived, isotopically heavy component in the diamond-forming fluids. Syngenetic inclusions in Wawa diamonds are exclusively peridotitic and, similar to many diamond occurrences worldwide, are dominated by the harzburgitic paragenesis. Compositionally they provide a perfect match to inclusions from diamonds with isotopically dated Paleo- to Mesoarchean crystallization ages. Several high-Cr harzburgitic garnet inclusions contain a small majorite component suggesting crystallization at depth of up to 300 km. Combining diamond and inclusion data indicates that Wawa diamonds formed and resided in a very thick package of chemically depleted lithospheric mantle that predates stabilization of the Superior Craton. If late granite blooms are interpreted as final stages of cratonization then a similar disconnect between Paleo- to Mesoarchean diamondiferous mantle lithosphere and Neoarchean cratonization is also apparent in other areas (e.g., the Lac de Gras area of the Slave Craton) and may suggest that early continental nuclei formed and retained their own diamondiferous roots.  相似文献   
333.
In this study the chemical nature of the bulk of water soluble organic compounds in fine atmospheric aerosol collected during summer 1998 at the Jungfraujoch, Switzerland (3580 m asl) is characterised. The mass concentration of water soluble organic substances was similar to those of major inorganic ions, and the water soluble organic matter was found to be composed of two main fractions: (i) highly polyconjugated, acidic compounds with a varying degree of hydrophobicity and (ii) slightly polyconjugated, neutral and very hydrophilic compounds. The contribution of both fractions to the total water soluble organic carbon was about 50%. Separation into individual components was impossible either by HPLC or capillary electrophoresis which indicates the presence of a high number of chemically similar but not identical species. Results obtained by ultrafiltration and HPLC-MS have shown that the molecular weights are of the order of several hundreds. Most of the protonation constants for the acidic compounds determined by capillary electrophoresis were in the range 104–107.  相似文献   
334.
Summary  This paper is a contribution to experimental meteorology: A sea-breeze front was investigated by aircraft observations and thorough numerical analysis using an unprecedented number of runs crossing the same front within a timespan of . The 33 runs were flown in a situation of offshore geostrophic wind of 5 m/s in 1000 hPa and with the strategy of obtaining information on the four-dimensional field (t=time, x=cross-coastal coordinate, y=coast-parallel coordinate, z=height): 9 runs in x-direction (and reverse) at different heights to yield x,z-cross-sections of the observed meteorological quantities (specific humidity q, potential temperature Θ and the components u, v and w of the wind velocity), assuming a frozen structure in time; the next 7 runs again in x-direction but all at the same level and on the same track to yield x,t-diagrams of the same quantities in order to study the temporal changes compared to those with x and z; the next 10 runs as a zig-zagging flight track crossing the front but drifting in y-direction, all at the same height, in order to obtain the y-dependency; andfinally 7 runs for another x,z-cross-sectional analysis, which can be compared to that evaluated from the runs at the beginning of the mission. The paper describes the 4-dimensional dependencies in detail. Pure x-variations at constant z are expressed by VCM low-pass filtered space series (VCM=variance conserving multiresolution, according to Howell and Mahrt, 1994). The x,z-analyses are similar to those in Kraus et al. (1990) and Finkele et al. (1995) verifying these results. The comparison of the x,z-studies gained from the data at the beginning and at the end of the mission show how the sea-breeze frontal area changes its structure. The fluctuations (in time) revealed by the low-pass filtered x,t-runs (same track and same height) are smaller than the contour intervals chosen in the x,z-cross-sections. This shows, that the single runs, from which the x,z-cross-sections are constructed, reliably and significantly contribute to the interpolated structure. The paper also demonstrates the overall development of the front within the 31/2 h of continuous observation. The x,y-fields demonstrate that the y-dependency of the various quantities is generally one order of magnitude smaller than the x-dependency and that the assumption of negligible y-dependency holds in the first order of approximation for a fairly homogeneous coast. Convective disturbances of a horizontal scale of 1 to 4 km at the landward side of the front, embedded in the offshore flow and bouncing against the landward propagating sea-breeze front, considerably contribute to variations of the frontal propagation speed and of the frontal shape and also to changes of the parameters with the along-frontal coordinate y. Received April 24, 1998 Revised November 3, 1998  相似文献   
335.
In this work, we simulate the 2011 M9 Tohoku-Oki tsunami using new coseismic tsunami sources based on inverting onshore and offshore geodetic data, using 3D Finite Element Models (FEM). Such FEMs simulate elastic dislocations along the plate boundary interface separating the stiff subducting Pacific Plate from the relatively weak forearc and volcanic arc of the overriding Eurasian plate. Due in part to the simulated weak forearc materials, such sources produce significant shallow slip (several tens of meters) along the updip portion of the rupture near the trench. To assess the accuracy of the new approach, we compare observations and numerical simulations of the tsunami's far- and near-field coastal impact for: (i) one of the standard seismic inversion sources (UCSB; Shao et al. 2011); and (ii) the new FEM sources. Specifically, results of numerical simulations for both sources, performed using the fully nonlinear and dispersive Boussinesq wave model FUNWAVE-TVD, are compared to DART buoy, GPS tide gauge, and inundation/runup measurements. We use a series of nested model grids with varying resolution (down to 250 m nearshore) and size, and assess effects on model results of the latter and of model physics (such as when including dispersion or not). We also assess the effects of triggering the tsunami sources in the propagation model: (i) either at once as a hot start, or with the spatiotemporal sequence derived from seismic inversion; and (ii) as a specified surface elevation or as a more realistic time and space-varying bottom boundary condition (in the latter case, we compute the initial tsunami generation up to 300 s using the non-hydrostatic model NHWAVE). Although additional refinements are expected in the near future, results based on the current FEM sources better explain long wave near-field observations at DART and GPS buoys near Japan, and measured tsunami inundation, while they simulate observations at distant DART buoys as well or better than the UCSB source. None of the sources, however, are able to explain the largest runup and inundation measured between 39.5° and 40.25°N, which could be due to insufficient model resolution in this region (Sanriku/Ria) of complex bathymetry/topography, and/or to additional tsunami generation mechanisms not represented in the coseismic sources (e.g., splay faults, submarine mass failure). This will be the object of future work.  相似文献   
336.
Ground-based aerosol instrumentation covering particle size diameters from 25 nm to 32 µm was deployed to determine aerosol concentration and cloud condensation nuclei (CCN)-activation properties at water vapor supersaturations in the range of S = 0.20–1.50 % in the remote Brazilian northeast semi-arid region (NEB) in coastal (maritime) and continental (inland) regimes. The instruments measured aerosol number concentration and activation spectra for CCN and revealed that aerosol properties are sensitive with respect to the sources as a function of the local wind circulation system. The observations show that coastal aerosol total number concentrations are above 3,000 cm?3 on average, exhibiting concentration peaks depending on the time of the day in a consistent daily pattern. The variation on aerosol concentration has also influences on the fraction of particles active as CCN. At 1.0 % water vapor supersaturation, the fraction can reach as high as 80 %. Inland aerosol total concentrations were about 1,800–1,900 cm?3 and did not show much diurnal variation. The fraction of particles active as CCN observed inland depend on the history of the air masses, and was much higher when air masses were originated over the sea. It was found that (NH4)2SO4 and NaCl are the major soluble inorganic fraction of the aerosols at the coast. The major fraction of NaCl was present in the coarse mode, while ammonium sulfate dominates the inorganic fraction at the submicron range, with about 10 % of the total aerosol mass at 0.32 µm. Inorganic compounds are almost absent in particles with sizes around 0.1 μm. The study suggests that the air masses with high concentration of CCN originate at the sea. The feasible explanation lies in the fact that the NEB’s beaches have a particular morphology that produces a wide surf zone and creates a large load of aerosols when combined with strong and permanent winds of the region.  相似文献   
337.
Ca isotope fractionation during inorganic calcite formation was experimentally studied by spontaneous precipitation at various precipitation rates (1.8 < log R < 4.4 μmol/m2/h) and temperatures (5, 25, and 40 °C) with traces of Sr using the CO2 diffusion technique.Results show that in analogy to Sr/Ca [see Tang J., Köhler S. J. and Dietzel M. (2008) Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: I. Sr incorporation. Geochim. Cosmochim. Acta] the 44Ca/40Ca fractionation during calcite formation can be followed by the Surface Entrapment Model (SEMO). According to the SEMO calculations at isotopic equilibrium no fractionation occurs (i.e., the fractionation coefficient αcalcite-aq = (44Ca/40Ca)s/(44Ca/40Ca)aq = 1 and Δ44/40Cacalcite-aq = 0‰), whereas at disequilibrium 44Ca is fractionated in a primary surface layer (i.e., the surface entrapment factor of 44Ca, F44Ca < 1). As a crystal grows at disequilibrium, the surface-depleted 44Ca is entrapped into the newly formed crystal lattice. 44Ca depletion in calcite can be counteracted by ion diffusion within the surface region. Our experimental results show elevated 44Ca fractionation in calcite grown at high precipitation rates due to limited time for Ca isotope re-equilibration by ion diffusion. Elevated temperature results in an increase of 44Ca ion diffusion and less 44Ca fractionation in the surface region. Thus, it is predicted from the SEMO that an increase in temperature results in less 44Ca fractionation and the impact of precipitation rate on 44Ca fractionation is reduced.A highly significant positive linear relationship between absolute 44Ca/40Ca fractionation and the apparent Sr distribution coefficient during calcite formation according to the equation
Δ44/40Cacalcite-aq=(1.90±0.26)·logDSr2.83±0.28  相似文献   
338.
Fossils represent the only physical evidence for the existence of extinct life, and hold a vast potential to reconstruct organisms and ecosystems vanished a long time ago. Yet fossils are not as complete as they might appear in museum exhibits, documentaries or Hollywood blockbusters. Millions of years of fossilization have left their marks on the fossils, which might no longer resemble the condition of the organism when it was alive. A key challenge in palaeontology is therefore to restore and reconstruct the morphology of fossils. Luckily, novel digital visualization and reconstruction techniques offer powerful tools to bring extinct organisms back to life in unprecedented detail.  相似文献   
339.
The development of aquatic reed stands at Lake Ammersee was documented by using vertical airborne photographs which were taken during four partial and five complete flights beginning in 1944. A dramatic decline of reed, especially of those parts which stood in deep water, was demonstrated. Between the years 1963 and 1969 60% and until 1992 another 30% of the Phragmitetum disappeared. Only at the east bank did the lake reed beds slightly expand.The examination of possible factors affecting the development of reed at Lake Ammersee lead to the following scenario: Until 1940 reed stands at Lake Ammersee spread and covered large aquatic areas. Only the east bank of the lake, where the influence of wind and waves was high, and banks near towns and recreation areas remained uncovered. Since the regulation of the River Ammer between 1920 and 1938 flood occurrence increased enormously. The flood disaster of the year 1965 coincided with the period of the highest rate of reed decline. The peak of eutrophication in the lake was reached in 1975. Huge carpets of green algae caused further retreat of reeds.At the present time recovery is not possible because of the negative influence of human recreation and of reed consuming waterfowl. Interestingly enough an expansion of reed has been observed at the east bank of Lake Ammersee at places were there was no Phragmites previously.  相似文献   
340.
The catastrophic storm surge of tropical cyclone Nargis in May 2008 demonstrated Myanmar's exposure to coastal flooding. The investigation of sediments left by tropical cyclone Nargis and its predecessors is an important contribution to prepare for the impact of future tropical cyclones and tsunamis in the region, because they may extend the database for long-term hazard assessment beyond the relatively short instrumental and historical record. This study, for the first time, presents deposits of modern and historical tropical cyclones and tsunamis from the coast of Myanmar. The aim is to establish regional sedimentary characteristics that may help to identify and discriminate cyclones and tsunamis in the geological record, and to document post-depositional changes due to tropical weathering in the first years after deposition. These findings if used to interpret older deposits will extend the existing instrumental record of flooding events in Myanmar. Evaluating deposits that can be related to specific events, such as the 2006 tropical cyclone Mala and the 2004 Indian Ocean tsunami, indicates similar sedimentary characteristics for both types of sediments. Landward thinning and fining trends, littoral sediment sources and sharp lower contacts allow for the differentiation from underlying deposits, while discrimination between tropical cyclone and tsunami origin is challenging based on the applied methods. The modern analogues also demonstrate a rather low preservation potential of the sand sheets due to carbonate dissolution, formation of organic top soils, and coastal erosion. However, in coastal depressions sand sheets of sufficient thickness (>10 cm) may be preserved where the shoreline is prograding or stable. In the most seaward swale of a beach-ridge plain at the Rakhine coast, two sand sheets have been identified in addition to the deposits of 2006 tropical cyclone Mala. Based on a combination of optically stimulated luminescence, radiocarbon and 137Cs dating, the younger sand layer is related to 1982 tropical cyclone Gwa, while the older sand layer is most probably the result of an event that took place prior to 1950. Comparison with historical records indicates that the archive is only sensitive to tropical cyclones of category 4 (or higher) with landfall directly in or a few tens of kilometres north of the study area. While the presented tropical cyclone records are restricted to the last 100 years, optically stimulated luminescence ages of the beach ridges indicate that the swales landward of the one investigated in this study might provide tropical cyclone information for at least the past 700 years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号