首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   18篇
  国内免费   7篇
测绘学   25篇
大气科学   19篇
地球物理   54篇
地质学   80篇
海洋学   3篇
天文学   29篇
自然地理   26篇
  2023年   1篇
  2021年   1篇
  2020年   4篇
  2019年   8篇
  2018年   8篇
  2017年   13篇
  2016年   11篇
  2015年   10篇
  2014年   14篇
  2013年   17篇
  2012年   9篇
  2011年   11篇
  2010年   13篇
  2009年   21篇
  2008年   14篇
  2007年   13篇
  2006年   16篇
  2005年   11篇
  2004年   6篇
  2003年   5篇
  2002年   3篇
  2001年   8篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1980年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有236条查询结果,搜索用时 656 毫秒
221.
As a result of rock dissolution processes, karst aquifers exhibit highly conductive features such as caves and conduits. Within these structures, groundwater flow can become turbulent and therefore be described by nonlinear gradient functions. Some numerical groundwater flow models explicitly account for pipe hydraulics by coupling the continuum model with a pipe network that represents the conduit system. In contrast, the Conduit Flow Process Mode 2 (CFPM2) for MODFLOW-2005 approximates turbulent flow by reducing the hydraulic conductivity within the existing linear head gradient of the MODFLOW continuum model. This approach reduces the practical as well as numerical efforts for simulating turbulence. The original formulation was for large pore aquifers where the onset of turbulence is at low Reynolds numbers (1 to 100) and not for conduits or pipes. In addition, the existing code requires multiple time steps for convergence due to iterative adjustment of the hydraulic conductivity. Modifications to the existing CFPM2 were made by implementing a generalized power function with a user-defined exponent. This allows for matching turbulence in porous media or pipes and eliminates the time steps required for iterative adjustment of hydraulic conductivity. The modified CFPM2 successfully replicated simple benchmark test problems.  相似文献   
222.
We explore the dependence of the central logarithmic slope of dark matter halo density profiles α on the spectral index n of the linear matter power spectrum P ( k ) using cosmological N -body simulations of scale-free models [i.e. P ( k ) ∝ k n ]. These simulations are based on a set of clear, reproducible and physically motivated criteria that fix the appropriate starting and stopping times for runs, and allow one to compare haloes across models with different spectral indices and mass resolutions. For each of our simulations we identify samples of well-resolved haloes in dynamical equilibrium and we analyse their mass profiles. By parametrizing the mass profile using a 'generalized' Navarro, Frenk & White profile in which the central logarithmic slope α is allowed to vary while preserving the r −3 asymptotic form at large radii, we obtain preferred central slopes for haloes in each of our models. There is a strong correlation between α and n , such that α becomes shallower as n becomes steeper. However, if we normalize our mass profiles by r −2, the radius at which the logarithmic slope of the density profile is −2, we find that these differences are no longer present. This is apparent if we plot the maximum slope     as a function of r / r −2– we find that the profiles are similar for haloes forming in different n models. This reflects the importance of concentration, and reveals that the concentrations of haloes forming in steep- n cosmologies tend to be smaller than those of haloes forming in shallow- n cosmologies. We conclude that there is no evidence for convergence to a unique central asymptotic slope, at least on the scales that we can resolve.  相似文献   
223.
The Wiluna lode-gold deposits are located in the Archean Wiluna greenstone belt, in the northern sector of the Norseman-Wiluna belt in the Yilgarn Craton of Western Australia. They are hosted in subgreenschist facies meta-basalts, and controlled by the Wiluna strike-slip fault system and associated shear veins and breccias. The 13 individual lode-gold deposits have produced around 115 t Au from 1901 to 1946 and 1986 to today. Historically, they also produced 38.3 t As and 3.5 t Sb. Gold formed in two stages: stage 1 gold-pyrite-arsenopyrite is finely disseminated in the wallrock and breccia fragments, whereas stage 2 gold-stibnite is located in massive shear veins and breccia matrix, as fracture-fill and in banded-colloform textured veins. Stibnite-gold orebodies only occur in some of the deposits (e.g., Moonlight and northern part of the West Lode) and also display a restricted vertical extent, being preserved only in the uppermost 200 m of stibnite-bearing lodes.Petrographic, conventional, and infrared microthermometric and laser-Raman analysis on stibnite-bearing quartz veins and breccias reveal that the antimony- and gold-rich hydrothermal fluid was of mixed H2O-NaCl-CO2±CH4 type. Microthermometric measurements reveal maximum homogenization temperatures of 340 °C (average 290±25 °C), and a wide range of salinities between 0.2 and 23 eq. wt% NaCl. Aqueous-carbonic fluid inclusions contain variable XCO2+CH4 (0.03 to 0.82), with the carbonic phase containing a maximum XCH4 of 0.21.Combined petrographic and microthermometric evidence suggests that the fluid inclusion properties reflect fluid immiscibility of a low-salinity, medium XCO2+CH4, homogeneous parent fluid at about 290 °C and pressures between 700 and 1,700 bar. Fluid immiscibility was triggered by cyclic pressure release during fault-zone movement. The decompression (adiabatic cooling) of the hydrothermal fluids shifted the ore fluid to lower temperatures, significantly reduced the degree of stibnite undersaturation, and caused stibnite to precipitate. The deposition of stibnite reduced the ore-fluid H2S concentration, thereby destabilized gold bisulfide complexes in solution, and caused gold precipitation locally. This mechanism explains the intimate spatial association of stibnite and gold in quartz veins and breccias in the stibnite-gold orebodies at Wiluna.Editorial handling: B. Lehmann  相似文献   
224.
225.
226.
A comprehensive observational database of Holocene relative sea-level (RSL) index points from northwest Europe (Belgium, the Netherlands, northwest Germany, southern North Sea) has been compiled in order to compare and reassess the data collected from the different countries/regions and by different workers on a common time–depth scale. RSL rise varies in magnitude and form between these regions, revealing a complex pattern of differential crustal movement which cannot be solely attributed to tectonic activity. It clearly contains a non-linear, glacio- and/or hydro-isostatic subsidence component, which is only small on the Belgian coastal plain but increases significantly to a value of ca 7.5 m relative to Belgium since 8 cal. ka BP along the northwest German coast. The subsidence is at least in part related to the Post-Glacial collapse of the so-called peripheral forebulge which developed around the Fennoscandian centre of ice loading during the Last Glacial Maximum. The RSL data have been compared to geodynamic Earth models in order to infer the radial viscosity structure of the Earth's mantle underneath NW Europe (lithosphere thickness, upper- and lower-mantle viscosity), and conversely to predict RSL in regions where we have only few observational data (e.g. in the southern North Sea). A very broad range of Earth parameters fit the Belgian RSL data, suggesting that glacial isostatic adjustment (GIA) only had a minor effect on Belgian crustal dynamics during and after the Last Ice Age. In contrast, a narrow range of Earth parameters define the southern North Sea region, reflecting the greater influence of GIA on these deeper/older samples. Modelled RSL data suggest that the zone of maximum forebulge subsidence runs in a relatively narrow, WNW–ESE trending band connecting the German federal state of Lower Saxony with the Dogger Bank area in the southern North Sea. Identification of the effects of local-scale factors such as past changes in tidal range or tectonic activity on the spatial and temporal variations of sea-level index points based on model-data comparisons is possible but is still complicated by the relatively large range of Earth model parameters fitting each RSL curve, emphasising the need for more high-quality observational data.  相似文献   
227.
U–Pb sensitive high resolution ion microprobe mass spectrometer (SHRIMP) ages of zircon, monazite and xenotime crystals from felsic intrusive rocks from the Rio Itapicuru greenstone belt show two development stages between 2,152 and 2,130 Ma, and between 2,130 and 2,080 Ma. The older intrusions yielded ages of 2,152±6 Ma in monazite crystals and 2,155±9 Ma in zircon crystals derived from the Trilhado granodiorite, and ages of 2,130±7 Ma and 2,128±8 Ma in zircon crystals derived from the Teofilândia tonalite. The emplacement age of the syntectonic Ambrósio dome as indicated by a 2,080±2-Ma xenotime age for a granite dyke probably marks the end of the felsic magmatism. This age shows good agreement with the Ar–Ar plateau age of 2,080±5 Ma obtained in hornblendes from an amphibolite and with a U–Pb SHRIMP age of 2,076±10 Ma in detrital zircon crystals from a quartzite, interpreted as the age of the peak of the metamorphism. The predominance of inherited zircons in the syntectonic Ambrósio dome suggests that the basement of the supracrustal rocks was composed of Archaean continental crust with components of 2,937±16, 3,111±13 and 3,162±13 Ma. Ar–Ar plateau ages of 2,050±4 Ma and 2,054±2 Ma on hydrothermal muscovite samples from the Fazenda Brasileiro gold deposit are interpreted as minimum ages for gold mineralisation and close to the true age of gold deposition. The Ar–Ar data indicate that the mineralisation must have occurred less than 30 million years after the peak of the metamorphism, or episodically between 2,080 Ma and 2,050 Ma, during uplift and exhumation of the orogen.Electronic supplementary material Supplementary material is available for this article at  相似文献   
228.
Changes in deformation mechanism coupled with spatial and temporal variations in reaction rates can result in preservation of disequilibrium mineral compositions in rocks affected by synmetamorphic shearing. Thermobarometric calculations on such rocks may thus yield meaningless results. We use Garbenschiefer samples from a shear zone in the Eastern Alps to study the effects of different deformational processes on calculated pressures and temperatures in samples that experienced the same overall PTt history. We focus on plagioclase, which accommodates strain by a variety of deformation mechanisms and is a key mineral in many thermobarometers. Plagioclase that deformed largely via dislocation creep mechanisms shows concentric chemical zoning, whereas plagioclase that experienced dissolution-precipitation creep preserves complex zoning. Rim compositions in the latter domains are not necessarily the youngest compositions, nor did they typically equilibrate with other phases in the assemblage. The timing of hornblende breakdown reactions relative to changes in plagioclase deformation mechanism also affected chemical zoning. Samples that escaped shear strain while near the thermal maximum yield internally consistent thermobarometric results, whereas samples that experienced shearing near the thermal maximum yield scattered results. Some of the variability in the results likely represents real differences in the PT conditions at which equilibration occurred during deformation. However, much of the variability represents spurious results obtained by pairing mineral compositions that were never in equilibrium with one another. Extraction of useful PT information from samples that experienced synmetamorphic deformation requires careful documentation of the relationships between deformation mechanisms and chemical zoning in order to select appropriate mineral compositions for thermobarometric calculations.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
229.
230.
A geological feature in the Qaidam Basin known as the “Shell Bar” contains millions of freshwater clam shells buried in situ. Since the 1980s, this feature in the now hyper-arid basin has been interpreted to be lake deposits that provide evidence for a warmer and more humid climate than present during late marine isotope stage 3 (MIS 3). Global climate during late MIS 3 and the last glacial maximum, however, was cold and dry, with much lower sea levels. We re-investigated the feature geomorphologically and sedimentologically, and employed optically stimulated luminescence (OSL) dating to verify the chronology of the sediments. We interpret the Shell Bar to be a remnant of a river channel formed by a stream that ran across an exposed lake bed during a regressive lake phase. Deflation of the surrounding older, fine-grained lacustrine deposits has left the fluvial channel sediments topographically inverted, indicating the erosive nature of the landscape. Luminescence ages place the formation of the Shell Bar in MIS 5 (~113–99 ka), much older than previous radiocarbon ages of <40 ka BP, but place the paleoclimatic inferences more in accord with other regional and global climate proxy records. We present a brief review of the age differences derived from 14C and OSL dating of some critical sections that were thought to represent a warmer and more humid climate than present during late MIS 3. We attribute the differences to underestimation of 14C ages. We suggest that 14C ages older than ~25 ka BP may require re-investigation, especially dates on samples from arid regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号