首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24964篇
  免费   201篇
  国内免费   919篇
测绘学   1420篇
大气科学   2008篇
地球物理   4712篇
地质学   11762篇
海洋学   1046篇
天文学   1721篇
综合类   2164篇
自然地理   1251篇
  2023年   2篇
  2022年   10篇
  2021年   15篇
  2020年   26篇
  2019年   19篇
  2018年   4773篇
  2017年   4052篇
  2016年   2604篇
  2015年   261篇
  2014年   111篇
  2013年   54篇
  2012年   1026篇
  2011年   2768篇
  2010年   2040篇
  2009年   2336篇
  2008年   1922篇
  2007年   2383篇
  2006年   93篇
  2005年   218篇
  2004年   430篇
  2003年   425篇
  2002年   266篇
  2001年   56篇
  2000年   58篇
  1999年   20篇
  1998年   26篇
  1997年   3篇
  1996年   5篇
  1995年   8篇
  1994年   3篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   3篇
  1981年   22篇
  1980年   20篇
  1979年   2篇
  1976年   6篇
  1973年   1篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In the middle of 2007, a severe flood affected the People’s Republic of Bangladesh. This is a natural disaster that takes people’s lives, destroys livestock, infrastructures and communication systems and, damages crops and fish ponds. Despite many adverse impacts, the flood situation is an accepted phenomenon to the citizens of Bangladesh, due to the immense increase of soil fertility due to the flood, plus, the recharge of aquifer, ecosystem and fish. The flood of 2007 was the 5th major flood of the last 20 years when more than thirty-five percent of the area of the country was inundated with flood water. As in the past, the flood of 2007 had its own significance. The geography of the country contains a floodplain delta of three major river basins: the Ganges, the Brahmaputra and the Meghna (GBM). The mean monthly rainfall plot from the TRMM satellite data has shown that for both the Meghna and Brahmaputra basins, the rainfall was higher during July 2007 than any other months of the last 2 years. This excess rainfall had accumulated in the Brahmaputra and Meghna rivers and carried downstream to Bangladesh. This was the main cause of the flooding in 2007. The first crossing above the danger level of the river waters was observed at Durgapur station of the Someswari and at Sunamganj station of the Surma on the nineteenth of July, 2007 inside Bangladesh. In terms of magnitude of the peak and duration of the flood, the Brahmaputra was higher in 2007 than during 2004. However, the Ganges river water level never crossed the danger level during flood of 2007. The Meghna was lower during the flood peak for the duration of the flood in 2007. The year–to-year variability in both the magnitude and duration of the flood suggests changes in rainfall and landuse pattern of the catchment.  相似文献   
992.
Anthropogenic activities are a disturbance factor of coastal systems and can be widely recognized as a major threat to the health of coastal systems. However, natural events cannot be disregarded from management issues because of their significant influence on the communities living in these areas. Based on long-term subtidal data from the Mondego Estuary (Portugal), the effects of natural events (e.g., floods and droughts) on macrobenthic communities were compared with the anthropogenic events. Sampling stations were grouped into characteristic zones (mouth, north arm, south arm) so the community dynamics of each of these estuarine areas could be followed over time. Environmental assessment was performed for stations using the Benthic Assessment Tool (BAT), and compared with the existing pressures. Human impacts persist over a number of years and gradually reduce ecosystem health, as discussed in the European Water Framework Directive. Paradoxically, natural events cause stronger impacts but are of a shorter duration, which allows for a faster recovery of macrobenthic communities. The study showed that caution should be taken when developing and implementing water policies so as not to disregard the importance of the different events (natural and human-caused) on the ecosystem health (e.g., community degradation and water quality and ecological quality status assessment).  相似文献   
993.
994.
A chemical factory near Ranipet town in Vellore district, in the state of Tamil Nadu, India produced chromium-based inorganic chemicals. The factory area in granite gnessic terrain receives an average annual rainfall of 1,000 mm. About 1.5 lakh tons of solid wastes rich in hexavalent chromium (Cr6+), spreading over an area of 14,000 m2 (about 3.5 acres), having about 4 m thickness, is accumulated in an open yard within the factory premises. The soil and groundwater in and around the factory area are contaminated with Cr6+ leached from dump site. Cr6+ is carcinogenic in nature and when leached in water can lead to respiratory disorders. Resistivity surveys comprising vertical electrical sounding, multielectrode resistivity imaging, drilling of bore wells, chemical analysis of soil, formation and groundwater samples and bore hole tracer studies were carried out within the factory and adjoining areas to decipher subsurface geology, hydraulic behavior of dyke as natural barrier and lateral and vertical extent of pollution zone in and around the chromium dump site. The data obtained were integrated and interpreted for understanding the pollution migration and its impact on environment. Remedial measures are suggested for containing the contamination.  相似文献   
995.
Effects of degree of saturation on shallow landslides triggered by rainfall   总被引:1,自引:3,他引:1  
The empirical rainfall threshold concept and the physical-based model are two commonly used approaches for the assessment of shallow landslides triggered by rainfall. To investigate in detail the rainfall-triggered shallow landslides, many physical-based models coupling the infinite slope stability analysis with the rainfall infiltration modeling in variably saturated soil were developed. However, in those physical-based shallow landslide models, the unit weight and the unsaturated shear strength were assumed constant rather than depending on the degree of saturation. In this study, the effects of the unit weight and the unsaturated shear strength as function of degree of saturation on rainfall-triggered shallow landslides are examined. Several designed scenarios and a real case scenario are used to conduct the examinations. The results show that not only the occurrence of shallow landslides but also the failure depth and the time to failure could be misassessed if the influences of degree of saturation on the unit weight and the unsaturated shear strength are neglected.  相似文献   
996.
997.
Nature-triggered hazards and disasters have traditionally been treated only from the lens of geophysical and biophysical processes, implying that the root cause of large-scale death and destruction lies in the natural domain rather than in a coupled human–environment system. Conceptually, the physical domain has been seen as discrete and separate from human entities, and solutions were sought in the technological intervention and control of the physical environment—solutions that often ended up being less effective than hoped for and sometimes even counter productive. At all levels, institutions have directed and redirected most of their financial and logistical resources into the search for scientific and engineering solutions without allocating due attention and resources towards the assessment of effects and effectiveness of the applications of such technological outcomes. However, over the last two decades, forceful criticisms of the ‘dominant’ technocratic approach to hazards analysis have appeared in the literature and consequently there has not only been a shift in thinking of causation of disaster loss in terms of human vulnerability, but also newer questions have arisen regarding distinguishing between the ‘physical exposure’ of people to threats and societal vulnerability, and linking them with propensity to hazards loss. Though the vulnerability/resilience paradigm has largely replaced the hazards paradigm within the social sciences and much of the professional emergency and disaster management communities, this shift of thinking has not progressed to much of the physical science community, decision-makers and the public, who have not yet accepted the idea that understanding and using human and societal dimensions is equally or more important than trying to deal and control nature through the use of technology. This special issue is intended to further the idea that the aspects of community and peoples’ power to mitigate, to improve coping mechanisms, to respond effectively, and recover with vigor against the environmental extremes are of paramount conceptual and policy importance.  相似文献   
998.
999.
The Silesia–Cracow district in Poland has been one of the world’s principal sources of zinc from nonsulfide zinc ore (Polish: galman). The still remaining nonsulfide ore resources can be estimated at 57 Mt at 5.6% Zn and 1.4% Pb. Nonsulfide mineralization is mainly hosted by Lower Muschelkalk (Triassic) limestone and is associated with different generations of the hydrothermal ore-bearing dolomite (OBD I, II, III). A fundamental ore control is believed to have been exerted by the basement faults, which were repeatedly reactivated during the Alpine tectonic cycle, leading to the formation of horst-and-graben structures: these dislocations may have caused short periods of emersion and the circulation of meteoric waters during the Cenozoic. Nonsulfide ores show a wide range of morphological characteristics and textures. They occur as earthy masses, crystalline aggregates, and concretions in cavities. Breccia and replacement textures are also very common. The most important mineral phases are: smithsonite, Fe–smithsonite, Zn–dolomite, goethite, and Fe–Mn(hydr)oxides. Minor hemimorphite and hydrozincite have also been detected. Two distinct nonsulfide ore types occur: the predominant red galman and the rare white galman. In the white galman, Fe–smithsonite and Zn–dolomite are particularly abundant. This ore type is commonly considered as a peripheral hydrothermal alteration product related to the same fluids that precipitated both the OBD II–III and the sulfides. In contrast, a supergene origin is commonly assumed for the red galman. Evidence of the petrographic and mineralogical difference between white and red galman is also found in stable isotope data. Smithsonite from red galman shows a limited range of δ 13CVPDB values (−10.1 to −11.4‰), and δ 18OVSMOW values (25.3‰ to 28.5‰, mean 26.8 ± 0.3‰). The uniform and low carbon isotope values of red galman smithsonite are unusual for supergene carbonate-hosted deposits and indicate the predominance of a single organic carbon source. Smithsonite from white galman has a more variable, slightly more positive carbon isotope (−2.9‰ to −7.4‰), but broadly similar oxygen isotope composition (26.8‰ to 28.9‰). The relationship of the white galman ore with the hydrothermal system responsible for OBD II and sulfide generation is still uncertain. The most important paleoweathering events took place in both Lower and Upper Silesia during Late Cretaceous up to Paleogene and early Neogene time. During this period, several short-lasting emersions and intense weathering episodes facilitated the formation of sinkholes in the Triassic carbonate rocks and the oxidation of sulfide orebodies through percolating meteoric waters. These phenomena may have lasted until the Middle Miocene.  相似文献   
1000.
The visualization of rock structure is a very useful and important technique in many aspects in geological and geotechnical engineering such as investigating and evaluating the stability of a high rock slope. The conventional method used to visualize rock structure is limited to plotting the orientation of individual discontinuities by using the Schmidt stereographic net. The present paper shows a new technique to visualize the three-dimensional structure of rock masses. The fitting function for three-dimensional rock structure was established based on data gathered from field survey. Two fitting methods by which the discontinuous points gathered from a plane and discrete points from field survey were fitted respectively are suggested. The technique to visualize the three-dimensional structure of rock masses includes many aspects such as projection transformation, blanking and mutual cutting, are investigated. Based on the visualizing technique, the rock structure at the site of Xilupdu dam which is being built in Southwest of China was investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号