首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   677篇
  免费   12篇
  国内免费   5篇
测绘学   29篇
大气科学   56篇
地球物理   163篇
地质学   270篇
海洋学   53篇
天文学   94篇
综合类   2篇
自然地理   27篇
  2020年   11篇
  2019年   9篇
  2018年   10篇
  2017年   12篇
  2016年   22篇
  2015年   17篇
  2014年   15篇
  2013年   29篇
  2012年   8篇
  2011年   31篇
  2010年   34篇
  2009年   29篇
  2008年   22篇
  2007年   28篇
  2006年   24篇
  2005年   28篇
  2004年   20篇
  2003年   17篇
  2002年   24篇
  2001年   19篇
  2000年   9篇
  1999年   19篇
  1998年   5篇
  1997年   6篇
  1995年   9篇
  1994年   8篇
  1993年   9篇
  1991年   17篇
  1990年   9篇
  1989年   9篇
  1987年   7篇
  1986年   5篇
  1985年   8篇
  1983年   7篇
  1981年   7篇
  1980年   8篇
  1979年   6篇
  1977年   7篇
  1976年   8篇
  1975年   5篇
  1972年   4篇
  1971年   5篇
  1966年   6篇
  1964年   6篇
  1962年   4篇
  1960年   6篇
  1956年   4篇
  1952年   5篇
  1949年   4篇
  1948年   5篇
排序方式: 共有694条查询结果,搜索用时 15 毫秒
281.
We present color ratio curves of the S-Asteroid 15 Eunomia, which have been extracted from high-precision photometric lightcurves obtained in three different VNIR wavelength bands at the Bochum Telescope, La Silla. The measured color ratio curves and near infrared spectra were used to derive a detailed surface composition model whose shape has been computed by V-lightcurve inversions. According to this analysis, the asteroid shows on one hemisphere a higher concentration of pyroxene, which causes an increased 440/700 nm and a reduced 940/700 nm reflectance ratio as well as a pronounced 2-μm absorption band. The remaining surface shows a higher concentration of olivine, leading to a reduced 440/700 nm and slightly increased 940/700 nm color ratio. In addition, we found that the maximum of the 440/700 nm color ratio curve coincide with the minimum of the 940/700 nm color ratio curve and vice versa. We demonstrate on the basis of USGS laboratory spectra that this anti-cyclical behavior can be explained by choosing Fe-rich olivine and a pyroxene with moderate Fe content as varying mineral phases. Furthermore, our observations confirm that 15 Eunomia is an irregular elongated and at least partially differentiated body. Previous spectral investigations of several smaller fragments of the Eunomia asteroid family revealed that the amount of fragments showing an increased pyroxene content exceeds the amount of pyroxene-poor fragments (Nathues, 2000, DLR Forschungsbericht, ISSN 1434-8454). This finding together with the observation that the major fraction of Eunomia's surface is enriched in olivine let us claim that a large fraction of the original pyroxene-enriched crust layer has been lost due to a major collision that created the Eunomia asteroid family. Significant spectral evidences, consistent with high concentrations of metals have been found neither in the rotational resolved spectra of 15 Eunomia nor in its fragments. This led to the conclusion that either no core consisting mainly of metals exists or that an eventual one has not been unearthed by the impact.  相似文献   
282.
Most of the existing lunar and planetary gravity data are in the form of LOS (line-of-sight) components which cannot be used for conventional geophysical modelling. Current methods to invert LOS data yield non-unique or poorly constrained results or results of low spatial resolution. An alternate method presented here promises to produce unique, detailed and more reliable results. It utilizes the fact that three non-coplanar LOS acceleration vectors determined at different times at some point of observation uniquely define the total acceleration vector at that point. Vector analysis shows that the local cartesian componentsg i of the total gravity anomaly vector may be obtained by inversion of the system $$a_{ij} g_j = A_i^2 $$ where thea ij andA i 's are, respectively, the local cartesian components and scalar magnitudes of the three required LOS acceleration vectors. In principle, the method is applicable to lunar as well as planetary LOS data.  相似文献   
283.
The general relativistic model of Cooperstock and Tieu, which attempts to fit rotation curves of spiral galaxies without invoking dark matter, is tested empirically using observations of the Milky Way. In particular, predictions for the mass density in the solar neighbourhood and the vertical density distribution at the position of the Sun are compared with observations. It is shown that the model of Cooperstock and Tieu, which was so constructed that it gives an excellent fit of the observed rotation curve, singularly fails to reproduce the observed local mass density and the vertical density profile of the Milky Way.  相似文献   
284.
The Milky Way is made up of a central bar, a disk with embedded spiral arms, and a dark matter halo. Observational and theoretical constraints for the characteristic parameters of these components will be presented, with emphasis on the constraints from the dynamics of the Milky Way gas. In particular, the fraction of dark matter inside the solar radius, the location of the main resonances, and the evidence for multiple pattern speeds will be discussed.Invited talk at the AAS Division on Dynamical Astronomy meeting, Santa Barbara, April 2005  相似文献   
285.
We use three-integral models to infer the distribution function (DF) of the boxy E3–E4 galaxy NGC 1600 from surface brightness and line-profile data on the minor and major axes. We assume axisymmetry and that the mass-to-light ratio is constant in the central ∼1 R e. Stars in the resulting gravitational potential move mainly on regular orbits. We use an approximate third integral K from perturbation theory and write the DF as a sum of basis functions in the three integrals E , L z and K . We then fit the projected moments of these basis functions to the kinematic observables and deprojected density, using a non-parametric algorithm. The deduced dynamical structure is radially anisotropic, with σ θ σ r ≈ σ φ σ r ≈0.7 on the major axis. Both on the minor axis and near the centre the velocity distribution is more isotropic; thus the model is flattened by equatorial radial orbits. The kinematic data are fitted without the need for a central black hole; the central mass determined previously from ground-based data therefore overestimates the actual black-hole mass. The mass-to-light ratio of the stars is M L V =6  h 50. The anisotropy structure of NGC 1600 with a radially anisotropic main body and more nearly isotropic centre is similar to that found recently in NGC 1399, 2434, 3379 and 6703, suggesting that this pattern may be common amongst massive elliptical galaxies. We discuss a possible merger origin of NGC 1600 in the light of these results.  相似文献   
286.
We evaluate the relationship between the intensity of remanent magnetization and fO2 in natural and synthetic Mars meteorites. The olivine‐phyric shergottite meteorite Yamato 980459 (Y‐980459) and a sulfur‐free synthetic analog (Y‐98*) of identical major element composition were analyzed to explore the rock magnetic and remanence properties of a basalt crystallized from a primitive melt, and to explore the role of magmatic and alteration environment fO2 on Mars crustal anomalies. The reducing conditions under which Y‐980459 is estimated to have formed (QFM‐2.5; Shearer et al. 2006) were replicated during the synthesis of Y‐98*. Y‐980459 contains pyrrhotite and chromite. Chromite is the only magnetic phase in Y‐98*. The remanence‐carrying capacity of Y‐980459 is comparable to other shergottites that formed in the fO2 range of QFM‐3 to QFM‐1. The remanence‐carrying capacity of these low fO2 basalts is 1–2 orders of magnitude too weak to account for the intense crustal anomalies observed in Mars's southern cratered highlands. Moderately oxidizing conditions of >QFM‐1, which are more commonly observed in nakhlites and Noachian breccias, are key to generating either a primary igneous assemblage or secondary alteration assemblage capable of acquiring an intense remanent magnetization, regardless of the basalt character or thermal history. This suggests that if igneous rocks are responsible for the intensely magnetized crust, these oxidizing conditions must have existed in the magmatic plumbing systems of early Mars or must have existed in the crust during secondary processes that led to acquisition of a chemical remanent magnetization.  相似文献   
287.
Gas phases of the interstellar medium (ISM) coexist locally, penetrate each other and mix by means of dynamical and plasmaphysical processes. E.g. heat conduction from the hot to the cooler gas leads to energy and mass exchange between the gas phases. Analytical solutions exist under which evaporation of cloudy material or condensation of hot gas onto the clouds' surface dominate. Since these results are derived for stationary and static conditions and under ideal assumptions, they do not necessarily hold for a dynamical ISM. On the other hand, the mass and energy exchange between the gas phases is of great importance for the energy budget of the ISM and by this influences the evolution of galaxies. This led us to investigate the evolution of interstellar clouds in a hot gas by means of numerical simulations. At first, we compare static models with the analytical results and found that interstellar clouds with parameters requiring analytically evaporation are, in contrast, accreting surrounding material if self-gravitation and cooling are implied. For the more realistic case, where clouds are embedded in a streaming hot gas, the models show that Kelvin-Helmholtz instability which leads to the disruption of the clouds is suppressed by heat conduction so that the clouds are stabilized to survive. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   
288.
289.
Whole-rock chemical composition and 11B/10B isotope ratios in tourmaline was investigated to study the geochemical recycling of boron during the evolution of the Andean basement from the Palaeozoic to Mesozoic. In the basement (Cambrian to Ordovician high-grade paragneisses, migmatites and orthogneisses, the Eocambrian Puncoviscana Formation, and Paleozoic-Mesozoic granitoid igneous rocks) whole-rock B contents are generally below 100 ppm, but B contents of ˜1 wt% are found in cogenetic aplite and pegmatite dikes and in tourmaline–quartz rocks. In the metasedimentary rocks, no systematic variation in B content because of metamorphic grade and no correlation of B with other incompatible elements are apparent. Tourmalines from the high-grade metamorphic basement yield δ11B values ranging from −11.2 to −6.8‰ and isotope fractionation during migmatisation was small. Metamorphic tourmalines from the Puncoviscana Formation have δ11B values between −6.3 and −5.8‰. The calculated (corrected for fractionation) δ11B values of −6 to −2‰ for the sedimentary protolith of the metamorphic basement indicate a continental B source with subordinate marine input. Tourmalines from Palaeozoic and Mesozoic granitoids display an identical range of δ11B values from −12 to −5.3‰ and indicate a similarly homogeneous B source throughout time. Tourmalines from pegmatites and tourmaline–quartz rocks record the average δ11B values of the parental granitic magma. We assume that B in the Palaeozoic and Mesozoic granitoids is derived from the local metamorphic basement supporting the hypothesis that recycling of the lower Palaeozoic crust is the dominant process in granitic magma formation from Palaeozoic to Mesozoic. Received: 15 December 1999 / Accepted: 11 July 2000  相似文献   
290.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号