首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   967篇
  免费   62篇
  国内免费   13篇
测绘学   50篇
大气科学   154篇
地球物理   220篇
地质学   406篇
海洋学   47篇
天文学   91篇
综合类   2篇
自然地理   72篇
  2023年   6篇
  2022年   7篇
  2021年   23篇
  2020年   29篇
  2019年   24篇
  2018年   53篇
  2017年   29篇
  2016年   52篇
  2015年   35篇
  2014年   49篇
  2013年   63篇
  2012年   53篇
  2011年   63篇
  2010年   54篇
  2009年   78篇
  2008年   58篇
  2007年   41篇
  2006年   49篇
  2005年   39篇
  2004年   37篇
  2003年   31篇
  2002年   15篇
  2001年   18篇
  2000年   15篇
  1999年   12篇
  1998年   18篇
  1997年   11篇
  1996年   7篇
  1995年   8篇
  1994年   5篇
  1993年   8篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   4篇
  1987年   5篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1971年   1篇
  1970年   1篇
  1969年   5篇
  1968年   3篇
  1967年   4篇
  1964年   1篇
排序方式: 共有1042条查询结果,搜索用时 375 毫秒
271.
272.
273.
An analysis of miniature sorted circles and polygons provides the first detailed assessment of sorted patterned ground from a southern African alpine region. Pattern dimensions and particle sorting were determined from two sites in the high Drakensberg. Although the sorted patterns in the high Drakensberg are somewhat polygenetic in developmental origin, they are primarily frost-induced. Miniature sorted patterned ground below 3200 m a.s.l. on the Drakensberg plateau develops annually during the winter months and disintegrates towards summer. The development of miniature sorted patterns within five to six weeks demonstrates the effect of regular freeze–thaw cycles at higher altitudes in the Drakensberg. © 1997 by John Wiley & Sons, Ltd.  相似文献   
274.
275.
A combination of two indirect methods to measure sediment flux is presented in this study to evaluate suspended sediment transport in a hydropower reservoir. The acoustic backscatter signal (ABS) from an Acoustic Doppler Current Profiler (ADCP) is therefore applied in pre-defined transects within the reservoir in combination with a Laser In-Situ Scattering Transmissometry – stream lined device (LISST-SL). The stationary LISST-SL derived suspended sediment concentration (SSC) measurements are used to calibrate the ABS. From the LISST-SL measurements a time series of SSC is obtained. This enables, in addition, a comprehensive data analysis to evaluate the influence of natural fluctuations of the SSC on the calculated sediment flux, which should be taken into account when assessing sediment transport. Furthermore SSC measurements are done with the LISST-SL close to the reservoir bed. In areas close to the bed no information regarding the ABS is available from the ADCP measurements due to the side-lobe interference. In various studies the information from the last three valid cells is used for extrapolation. However, as result of a comparison of the LISST-SL measurements with extrapolated SSC values from the ADCP measurements it can be seen that, especially in deep reservoirs, this method has to be adapted to the in-situ conditions.  相似文献   
276.
Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4°) and regional (resolution 1/10°) domains with forecast ranges of +?7 and +?3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing +?10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.  相似文献   
277.
The quaternary coastal Collo aquifer in northeast Algeria (NE Algeria) marks an important local water resource supporting domestic, industrial and agricultural activities. The aquifer shows signs of contamination due to the existence of various pollution sources, especially nitrogen compounds. Focusing the local identification of key vulnerable zones and related main hazard types for wise future water management, the present study highlights results from a coupled analysis of the well-established Geographical Information System (GIS)-based GOD (groundwater occurrence, overall aquifer class, depth to groundwater) hazard index analysis and the COST Action 620 plan. Most prevalent hazard types in the study area were identified as the urban/residential areas without public sewage systems, landfill and agricultural/pasturing areas. Regarding the vulnerability analysis particularly the northern aquifer region is endangered, dominated by high (22.4%) and moderate (27.4%) vulnerability classes. Central, western and southern aquifer regions are characterized by low (23.3%) and very low (26.9%) vulnerability classes. Overall, these GOD-derived results are in good agreement with earlier results obtained by the more complex DRASTIC approach. Final risk assessment and validation related to 2014/2015 nitrate sampling campaigns indicate that “high risk” and “very high risk” classes only apply to a small part of the study area in the northern sector (8%), whereas the main part (>60%) broadly affecting the central, western and southern sector only bears a low to very low risk of water pollution. Apart from a future-oriented groundwater abstraction strategy it is recommended to update the evaluation regularly to effectively consider dynamic changes of local anthropogenic activities and hazards.  相似文献   
278.
Spectral decomposition is a powerful tool that can provide geological details dependent upon discrete frequencies. Complex spectral decomposition using inversion strategies differs from conventional spectral decomposition methods in that it produces not only frequency information but also wavelet phase information. This method was applied to a time‐lapse three‐dimensional seismic dataset in order to test the feasibility of using wavelet phase changes to detect and map injected carbon dioxide within the reservoir at the Ketzin carbon dioxide storage site, Germany. Simplified zero‐offset forward modelling was used to help verify the effectiveness of this technique and to better understand the wavelet phase response from the highly heterogeneous storage reservoir and carbon dioxide plume. Ambient noise and signal‐to‐noise ratios were calculated from the raw data to determine the extracted wavelet phase. Strong noise caused by rainfall and the assumed spatial distribution of sandstone channels in the reservoir could be correlated with phase anomalies. Qualitative and quantitative results indicate that the wavelet phase extracted by the complex spectral decomposition technique has great potential as a practical and feasible tool for carbon dioxide detection at the Ketzin pilot site.  相似文献   
279.
In this study, we present a novel approach to measure fundamental processes of cohesive sediment erosion. The experimental setup consists of a laboratory erosion flume (SETEG) and a photogrammetric method to detect sediment erosion (PHOTOSED). Detailed data are presented for three erosion experiments, which were conducted with a natural non-cohesive/cohesive sediment mixture at increasing sediment depths (4, 8, 16 cm). In each experiment, the sediment was exposed to a set of incrementally increasing shear stresses and the erosion was measured dynamically, pixel-based, and approximate to the process scale given the resolution of PHOTOSED. This enables us to distinguish between (i) individual emerging erosion spots caused by surface erosion and (ii) large holes torn open by detached aggregate chunks. Moreover, interrelated processes were observed, such as (iii) propagation of the erosion in the longitudinal and lateral direction leading to merging of disconnected erosion areas and (iv) progressive vertical erosion of already affected areas. By complementing the (bulk) erosion volume profiles with additional quantitative variables, which contain spatial information (erosion area, specific deepening, number of disconnected erosion areas), conclusions on the erosion behaviour (and the dominant processes) can be drawn without requiring qualitative information (such as visual observations). In addition, we provide figures indicating the spatio-temporal erosion variability and the (bulk) erosion rates for selected time periods. We evaluate the variability by statistical quantities and show that significant erosion is mainly confined to only a few events during temporal progression, but then considerably exceeds the time-averaged median of the erosion (factors between 7.0 and 16.0). Further, we point to uncertainties in using (bulk) erosion rates to assess cohesive sediment erosion and particularly the underlying processes. As a whole, the results emphasise the need to measure cohesive sediment erosion with high spatio-temporal resolution to obtain reliable and robust information. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
280.
Groundwater is an important component of the hydrological cycle with significant interactions with soil hydrological processes. Recent studies have demonstrated that incorporating groundwater hydrology in land surface models (LSMs) considerably improves the prediction of the partitioning of water components (e.g., runoff and evapotranspiration) at the land surface. However, the Joint UK Land Environment Simulator (JULES), an LSM developed in the United Kingdom, does not yet have an explicit representation of groundwater. We propose an implementation of a simplified groundwater flow boundary parameterization (JULES-GFB), which replaces the original free drainage assumption in the default model (JULES-FD). We tested the two approaches under a controlled environment for various soil types using two synthetic experiments: (1) single-column and (2) tilted-V catchment, using a three-dimensional (3-D) hydrological model (ParFlow) as a benchmark for JULES’ performance. In addition, we applied our new JULES-GFB model to a regional domain in the UK, where groundwater is the key element for runoff generation. In the single-column infiltration experiment, JULES-GFB showed improved soil moisture dynamics in comparison with JULES-FD, for almost all soil types (except coarse soils) under a variety of initial water table depths. In the tilted-V catchment experiment, JULES-GFB successfully represented the dynamics and the magnitude of saturated and unsaturated storage against the benchmark. The lateral water flow produced by JULES-GFB was about 50% of what was produced by the benchmark, while JULES-FD completely ignores this process. In the regional domain application, the Kling-Gupta efficiency (KGE) for the total runoff simulation showed an average improvement from 0.25 for JULES-FD to 0.75 for JULES-GFB. The mean bias of actual evapotranspiration relative to the Global Land Evaporation Amsterdam Model (GLEAM) product was improved from −0.22 to −0.01 mm day−1. Our new JULES-GFB implementation provides an opportunity to better understand the interactions between the subsurface and land surface processes that are dominated by groundwater hydrology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号