首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   991篇
  免费   63篇
  国内免费   15篇
测绘学   50篇
大气科学   154篇
地球物理   221篇
地质学   415篇
海洋学   47篇
天文学   108篇
综合类   2篇
自然地理   72篇
  2023年   6篇
  2022年   7篇
  2021年   23篇
  2020年   29篇
  2019年   25篇
  2018年   53篇
  2017年   30篇
  2016年   54篇
  2015年   35篇
  2014年   50篇
  2013年   63篇
  2012年   55篇
  2011年   65篇
  2010年   57篇
  2009年   83篇
  2008年   60篇
  2007年   42篇
  2006年   52篇
  2005年   39篇
  2004年   37篇
  2003年   31篇
  2002年   18篇
  2001年   18篇
  2000年   15篇
  1999年   12篇
  1998年   18篇
  1997年   11篇
  1996年   7篇
  1995年   8篇
  1994年   5篇
  1993年   8篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   5篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1971年   1篇
  1970年   1篇
  1969年   5篇
  1968年   3篇
  1967年   4篇
  1964年   1篇
排序方式: 共有1069条查询结果,搜索用时 31 毫秒
251.
Summary The mean zonal and meridional wind components and the mean mass circulation in different latitudes are discussed in relation to previous studies. Divergence and vertical motion are calculated for various latitude belts. There is evidence for a strong tropical Hadley cell with a temperate latitude indirect circulation during the winter season. During summer, the northern Hadley cell is weaker and displaced poleward; a circulation in the opposite sense appears in equatorial latitudes.The regional patterns of divergence and vertical motion appear related particularly to the position of the subtropical high pressure cells. Subsidence and lower-layer divergence are characteristic of the eastern flanks of the subtropical anticyclones, while the opposite pattern prevails on its western flanks. These longitudinal contrasts appear particularly pronounced during the summer season. The three-dimensional flow pattern in the tropics is illustrated by selected trajectories for the winter and summer seasons.  相似文献   
252.
Role of melt during deformation in the deep crust   总被引:1,自引:0,他引:1  
Deformation in the deep crust is strongly influenced by the presence of melt. Injected melt (or magma) weakens the crust because strain will tend to localize where melt is present. The amount of strain a pluton may accommodate is dependent on the length of time it takes for a pluton to crystallize and the strain rate. For plutons that intrude into rocks which are near the solidus temperature of the melt, crystallization times can be quite long (> 1Myr).
Partial melting of deep crustal rocks can lead to melt-enhanced embrittlement. This occurs because the volume change for most melting reactions is positive. Therefore, when the rate of melt production outpaces the rate at which melt can leave the system, the melt pressure increases. Eventually, the melt pressure may become sufficiently high that the melting rocks behave in a brittle fashion and fracture.
Conjugate sets of dilatant shear fractures filled with melt occur in migmatite from the Central Gneiss belt (Canada); this suggests that melt-enhanced embrittlement occurred in these rocks. An expression which relates the magnitude of differential stress to the angle between conjugate dilatant shear fractures is derived. Assuming that migmatite has a small tensile strength, differential stresses are ≤ 20 MPa in migmatitic rocks at the time melt-enhanced embrittlement occurs. The occurrence of melt-enhanced embrittlement shows that a switch in deformation mechanism from plastic flow to cataclasis is possible in the deep crust during melting. Furthermore, repeated episodes of melt-enhanced embrittlement in migmatitic rocks may be an efficient mechanism for extracting melt from partially melted terrains.  相似文献   
253.
The predictability of Indian summer monsoon rainfall from pre-season circulation indices is explored from observations during 1939–91. The predictand is the all-India average of June–September precipitation NIR, and the precursors examined are the latitude position of the 500 mb ridge along 75°E in April (L), the pressure tendency April minus January at Darwin (DPT), March-April-May temperature at six stations in west central India (T6), the sea surface temperature (SST) anomaly in the northeastern Arabian Sea in May (ASM), SST anomaly in the Arabian Sea in January (ANJ), northern hemisphere temperature anomaly in January–February (NHT), and Eurasian snow cover in January (SNOW). Monsoon rainfall tends to be enhanced with a more northerly ridge position, small Darwin pressure tendency, warmer pre-season conditions, and reduced winter snow cover. However, relationships have varied considerably over the past half-century, with the strongest associations during 1950–80, and a drastic weakening in the 1980s. Four prediction models were constructed based on stepwise multiple regression, using as predictors combinations of L, DPT, T6, ASM, and NHT, with 1939–68 as “dependent” dataset, or training period, and 1969–91 as “independent” dataset or verification period. For the 1969–80 portion of the verification period calculated and observed NIR values agreed closely, with the models explaining 74–79% of the variance. By contrast, after 1980 predictions deteriorated drastically, with the explained variance for the 1969–89 time span dropping to 25–31%. The monsoon rainfall of 1990 and 1991 turned out to be again highly predictable from models based on stepwise multiple regression and linear discriminant analysis and using as input L + DPT or L + DPT + NHT, and with this encouragement an experimental real-time forecast was issued of the 1992 monsoon rainfall. These results underline the need for investigations into decadal-scale changes in the general circulation setting and raise concern for the continued success of seasonal forecasting.  相似文献   
254.
255.
Distance correlations of Late Tortonian–Messinian littoral carbonate complexes are proposed from the study of eight platforms in the western and central Mediterranean. Correlations are based on the identification of two major biological sedimentary cycles and of two index surfaces. Surface A is a maximum flooding surface during cycle 1 at around 6.7 Ma. Surface B is a regional marine planation surface at around 5.95 Ma, at the base of cycle 2 (Terminal Carbonate Complex). A general sedimentary model is proposed for the 7–5.6-Ma time-span. The boundary between cycles 1 and 2 is coincident with the onset of the Messinian Salinity Crisis, and appears to be related to major environmental–paleo-oceanographic changes in the Mediterranean, rather than to a major sea-level drop or to climatic change.  相似文献   
256.
Sedimentary basins are suitable to different degrees for CO 2 geological sequestration as a result of various intrinsic and extrinsic characteristics, of which the geothermal regime is one of the most important. Warm basins are less favorable for CO 2 sequestration than cold basins because of reduced capacity in terms of CO 2 mass, and because of higher CO 2 buoyancy, which drives the upward CO 2 migration. A set of 15 criteria, with several classes each, has been developed for the assessment and ranking of sedimentary basins in terms of their suitability for CO 2 sequestration. Using a parametric normalization procedure, a basin's individual scores are summed to a total score using weights that express the relative importance of different criteria. The total score is ranked to determine the most suitable basin or region thereof for the geological sequestration of CO 2. The method is extremely flexible in that it allows changes in the functions that express the importance of various classes for any given criterion, and in the weights that express the relative importance of various criteria. Examples of application are given for Canada's case and for the Alberta basin in Canada.  相似文献   
257.
This paper describes the numerical results for the COUPLEX benchmark obtained with the simulation software UG using vertex centered finite volume and higher order discontinuous Galerkin schemes. Multigrid solvers on unstructured grids, local mesh refinement and parallel computation are employed to yield very accurate solutions. Since the full range of results required in the benchmarks is too large to be displayed in this paper we focus on the comparison of discretization schemes, assessment of numerical errors and the presentation of parallel computations.  相似文献   
258.
Two coralgal patch reefs of the Hauterivian Llàcova Formation (Maestrat Basin, eastern Spain), exposed at two consecutive stratigraphic levels within a single section, have been studied to document taxonomic implications of a changing environment. These two reefal palaeocommunities differ substantially in coral taxonomic composition, microbialite formation pattern and in abundance and composition of encrusters and bioeroders. Of a total of 14 coral species, just one (Stylina parvistella) occurs in both reefs, yet is abundant in the (lower) reef A and rare, occurring near the reef base, in the reef B assemblage. Reef A is dominated by a phototrophic fauna and coral species with small corallites and imperforate septa (a stylinid-thamnasteriid-heterocoeniid-actinastreid association), along with an encruster association dominated by Bacinella and Lithocodium. Reef B is characterised by a balanced phototrophic-heterotrophic fauna that gradually passes into a heterotrophic-dominated assemblage. During this latest growth stage, microsolenid corals dominated the assemblage. The encruster fauna is characterised by sponges, polychaetes and bryozoans. Moderate deepening during a transgressive systems tract (TST) depositional sequence and elevated nutrient supply are interpreted to represent the driving environmental parameters that caused faunal compositions to differ between these two reefal palaeocommunities. Nine coral taxa, previously known only from younger (Barremian–Cenomanian) strata, have been identified, namely Dimorphocoenia? rudis, Eocomoseris raueni, Eocomoseris sp., Holocoenia jaccardi, Latusastrea irregularis, Mesomorpha sp., Microsolena kugleri, Polyphylloseris mammillata and Polyphylloseris sp. This observation emphasises the importance of the Hauterivian Stage as a period of evolutionary transition in Late Jurassic–Cretaceous coral faunas.  相似文献   
259.
The respiratory reduction of nitrate (denitrification) is acknowledged as the most important process that converts biologically available nitrogen to gaseous dinitrogen (N2) in marine ecosystems. Recent findings, however, indicate that anaerobic ammonium oxidation by nitrite (anammox) may be an important pathway for N2 formation and N removal in coastal marine sediments and in anoxic water columns of the oceans. In the present study, we explored this novel mechanism during N mineralization by 15N amendments (single and coupled additions of 15NH4+, 14NO3 and 15NO3) to surface sediments with a wide range of characteristics and overall reactivity. Patterns of 29/30N2 production in the pore water during closed sediment incubations demonstrated anammox at all 7 of the investigated sites. Stoichiometric calculations revealed that 4% to 79% of total N2 production was due to this novel route. The relative importance of anammox for N2 release was inversely correlated with remineralized solute production, benthic O2 consumption, and surface sediment Chl a. The observed correlations indicate competition between reductants for pore water nitrite during early diagenesis and that additional factors (e.g. availability of Mn-oxides), superimposed on overall patterns of diagenetic activity, are important for determining absolute and relative rates of anammox in coastal marine sediments.  相似文献   
260.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号