首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2933篇
  免费   81篇
  国内免费   20篇
测绘学   72篇
大气科学   242篇
地球物理   567篇
地质学   879篇
海洋学   319篇
天文学   695篇
综合类   1篇
自然地理   259篇
  2021年   18篇
  2020年   24篇
  2019年   36篇
  2018年   44篇
  2017年   28篇
  2016年   56篇
  2015年   44篇
  2014年   58篇
  2013年   156篇
  2012年   65篇
  2011年   114篇
  2010年   74篇
  2009年   147篇
  2008年   106篇
  2007年   112篇
  2006年   106篇
  2005年   82篇
  2004年   82篇
  2003年   83篇
  2002年   82篇
  2001年   68篇
  2000年   82篇
  1999年   66篇
  1998年   79篇
  1997年   47篇
  1996年   52篇
  1995年   42篇
  1994年   51篇
  1993年   40篇
  1992年   38篇
  1991年   39篇
  1990年   45篇
  1989年   39篇
  1988年   28篇
  1987年   49篇
  1986年   33篇
  1985年   57篇
  1984年   60篇
  1983年   61篇
  1982年   60篇
  1981年   62篇
  1980年   52篇
  1979年   39篇
  1978年   38篇
  1977年   50篇
  1976年   32篇
  1975年   38篇
  1974年   21篇
  1973年   27篇
  1972年   18篇
排序方式: 共有3034条查询结果,搜索用时 890 毫秒
41.
Properties of the light saturation curve of photosynthesis and ribulose-1,5-bisphosphate carboxylase (RuBPC) activity are shown to change qualitatively in a natural population of marine phytoplankton during a spring bloom. Evidence is presented to show that these changes constitute photoadapative responses to increasing irradiance. As irradiance increased during the bloom, both the level of light-saturated photosynthesis (Pm) and the initial slope of the light saturation curve (α = photosynthetic efficiency) increased whether those parameters were normalized to chlorophyll a concentration (Pmb, αb) or to cell numbers (Pmc, αc). The magnitudes of these changes were such that Ik (= Pm/α, the photoadaptation parameter) did not change, but Im, the light intensity at which photosynthesis becomes saturated, increased. RuBPC activity, both chlorophyll a (RuBPCb) and cell number normalized (RuBPCc), also increased during the bloom. We suggest that these adaptations were achieved by simultaneously increasing the number of photosynthetic units, proportionately decreasing the photosynthetic unit size, and increasing both the concentrations of the enzymes of the dark reactions and possibly also of photosynthetic electron transport components.We also observed diminished levels of photoinhibition in the high light adapted cells late in the bloom and have suggested that this was a consequence of the same suite of physiological changes.In situ carbon fixation per cell increased during the bloom whereas no change occurred in this parameter when normalized to chlorophyll a concentration. Although these photoadaptive responses thus permitted carbon to be fixed in situ more rapidly per cell, at a constant efficiency with respect to investment of energy in the photosynthetic apparatus, they did not result in a change in growth rate. Based on consideratios of the role of time scale in physiological adaptation, however, it is suggested that the observed alterations in photosynthesis with increasing irradiance might permit a cell to more rapidly fill an energy quota for division, possibly an advantage in a mixing environment in which energy is patchily distributed, both spatially and temporalyy.Phosphoenolpyruvate carboxylase activity when normalized to chlorophyll a (PEPCb) did not change during the bloom while chlorophyll a normalized dark carbon fixation decreased sharply and was quantitatively small compared to PEPCb. On this basis and considering that RuBPCb increased during the bloom, it is suggested that, although PEPC may be involved in dark carbon fixation, its most important quantitative role is probably an indirect one in light dependent photosynthesis.We have also considered the relevance of laboratory results on photoadaptation to interpretations of field studies and have suggested that batch culture studies must be treated with caution but that turbidistat and semi-continuous methods provide reasonable simulations of natural conditions.  相似文献   
42.
43.
A coupled QuasiGeostrophic mixed-layer ECOsystem model (QGECO) is used to investigate the impact of the underlying mesoscale eddy field on the spatial and temporal scales of biological production and on overall rates of primary productivity. The model exhibits temporal trends in the biological and physical fields similar to those observed in the North Atlantic; i.e. the mixed layer shallows in spring causing a rapid increase in phytoplankton concentrations and a corresponding decline in nutrient levels. Heterogeneity is produced in the mixed layer through Ekman pumping velocities resulting from the interaction of windstress and surface currents. This variability impacts on biological production in two ways. Firstly, spatial variations in the depth of the mixed layer affect the photosynthetically active radiation (PAR) availability and hence production rates, and secondly, eddy enhanced exchange between the surface water and those at depth bring additional nutrients into the euphotic zone. These processes result in significant spatial and temporal heterogeneity in the ecosystem distributions.Investigation of the spatial heterogeneity of the biological system finds variability to be significantly greater than that of the mixed layer. The relationship between the eddy field and the ecosystem is investigated. The structure and correlation of the biogeochernical fields change with time. The biological fields are found to have a shorter horizontal scale, but whiter spectrum than the underlying eddy field.Overwinter conditions are found to have a profound effect on the variability, size and timing of the following spring bloom event. Variations in the nitrate levels are primarily responsible for the variability in the biological system in the first year. In subsequent years the variation in the overwintering population is found to be dominant.  相似文献   
44.
Recently, the TOPEX/POSEIDON Science Working Team has recommended the FES95.2.1 and CSR3.0 ocean tide models for reprocessing the TOPEX/POSEIDON Geophysical Data Records. Without doubt, the performance of these models, especially in the deep oceans, is excellent. However, from a comparison of these hydrodynamically consistent models with the purely empirical DW3.2 and DEOS96.1 models, it appears that FES95.2.1 and CSR3.0 are affected by basin boundary related errors which are caused by the basin-wise solution procedure of the FES ocean tide model series. In their turn, the empirical DW3.2 and DEOS96.1 models seem to suffer from significant errors in the Antarctic seas due to the seasonal growth and decay of Antarctic sea ice. Also, bathymetry-induced differences were found between the hydrodynamically consistent models and the empirical models. Concerning these differences, TOPEX/POSEIDON and ERS-1 crossover statistics unfortunately do not provide conclusive results on which models are in error.  相似文献   
45.
46.
47.
Analyses of DSRV “Alvin” core samples on the Cape Hatteras margin indicate major textural and compositional changes at depths of about 1000 and well below 2500 m. The distribution patterns of petrologic parameters correlate well with water mass flow and suspended-sediment plumes measured on this margin by other workers. Our study also shows: (a) vigorous erosion and sediment transport at depths of less than 400 m resulting from the NE-trending Gulf Stream flow; (b) deposition, largely planktonic-rich sediment released from the Gulf Stream, on the upper- to mid-slope, to depths of about 800–1200 m; (c) winnowing, resuspension and deposition induced by periodically intensified slope currents on the mid-slope to uppermost rise, between about 1000 and 2500 m; and (d) prevailing deposition on the upper rise proper (below 2500 m), from transport by the SW-trending Western Boundary Undercurrent. Sediments moved by bottom currents have altered the composition and distribution patterns of material transported downslope by offshelf spillover; this mixing of gravity-emplaced and bottom-current-transported sediment obscures depositional boundaries. Moreover, reworking of the seafloor by benthic organisms alters physical properties and changes erodability of surficial sediments by bottom currents. Measurement of current flow above the seafloor and direct observation of the bottom are insufficient to delineate surficial sediment boundaries. Detailed petrologic analyses are needed to recognize the long-term signature of processes and define depositional provinces.  相似文献   
48.
The radiometers on board the satellites ERS-1, TOPEX/Poseidon, ERS-2, GFO, Jason-1, and Envisat measure brightness temperatures at two or three different frequencies to determine the total columnal water vapor content and wet tropospheric path delay, a major correction to the altimeter range measurements. In order to asses the long-term stability of the path delay, the radiometers are calibrated against vicarious cold and hot references, against each other, and against several atmospheric models. Four of these radiometers exhibit significant drifts in at least one of the channels, resulting in yet unmodeled errors in path delay of up to 1 mm/year, thus limiting the accuracy at which global sea level rise can be inferred from the altimeter range measurements.  相似文献   
49.
A sensitivity analysis of the waterline method of constructing a Digital Elevation Model (DEM) of an intertidal zone using remote sensing and hydrodynamic modelling is described. Variation in vertical height accuracy as a function of beach slope is investigated using a set of nine ERS Synthetic Aperture Radar (SAR) images of the Humber/Wash area on the English east coast acquired between 1992 and 1994. Waterlines from these images are heighted using a hydrodynamic tide-surge model and interpolated using block kriging. On 1:500 slope beaches, an average block height estimation standard deviation of 18–22 cm is achieved. This rises to 27 cm on 1:100 slope beaches, and 32 cm on 1:30 slope beaches. The average heighting error at different slopes is decomposed into components due to waterline heighting error, inadequate sensor resolution and interpolation inaccuracy. It is shown that, at 1:500 slope, waterline heighting error and interpolation inaccuracy are the main error sources, whilst at 1:30 slope, errors due to inadequate sensor resolution become dominant. The ability of the technique to generate intertidal DEMs for almost the entire coastal zone in a complete ERS SAR scene covering 100×100 km is demonstrated.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号