首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5398篇
  免费   556篇
  国内免费   165篇
测绘学   244篇
大气科学   607篇
地球物理   1999篇
地质学   2198篇
海洋学   270篇
天文学   361篇
综合类   189篇
自然地理   251篇
  2023年   2篇
  2022年   11篇
  2021年   24篇
  2020年   10篇
  2019年   16篇
  2018年   448篇
  2017年   385篇
  2016年   266篇
  2015年   160篇
  2014年   125篇
  2013年   128篇
  2012年   657篇
  2011年   426篇
  2010年   123篇
  2009年   143篇
  2008年   125篇
  2007年   120篇
  2006年   136篇
  2005年   833篇
  2004年   874篇
  2003年   653篇
  2002年   178篇
  2001年   74篇
  2000年   47篇
  1999年   18篇
  1998年   12篇
  1997年   17篇
  1996年   15篇
  1995年   3篇
  1993年   2篇
  1992年   3篇
  1991年   9篇
  1990年   10篇
  1989年   6篇
  1987年   5篇
  1985年   4篇
  1980年   4篇
  1976年   4篇
  1975年   4篇
  1973年   3篇
  1969年   3篇
  1968年   2篇
  1965年   3篇
  1963年   2篇
  1961年   2篇
  1959年   2篇
  1955年   2篇
  1954年   2篇
  1951年   2篇
  1948年   2篇
排序方式: 共有6119条查询结果,搜索用时 296 毫秒
91.
针对准噶尔盆地玛湖凹陷西斜坡风南地区三叠系百口泉组扇三角洲砂岩物性空间变化大、优质储集层(孔隙度大于7.4%,渗透率大于0.05×10-3μm2)预测难的问题,在沉积岩石学、地震沉积学以及地震反演和解释理论指导下,综合利用测井、岩心和三维地震等资料开展了高精度层序地层划分、沉积微相描述和优质储集层地震反演研究。建立了风南井区四级层序地层格架,明确了扇三角洲多期水进水退的充填过程,指出SSQ3和SSQ5是优质储集层的发育层系;识别出扇三角洲平原分流河道、河道间和扇三角洲前缘水下分流水道、河口坝、席状砂等沉积微相,指出扇三角洲平原是优质储集层发育相带;通过应用高分辨层序地层纵向边界和沉积相横向边界约束,进行分层相控叠后地震波阻抗反演,提升储集层预测精度,在SSQ3和SSQ5预测5个优质储集层发育区,提出3口井的井位建议,钻探均获工业油流。  相似文献   
92.
藏南沉错湖泊沉积多指标揭示的2万年以来环境变化   总被引:22,自引:1,他引:22  
通过对藏南沉错湖芯TC1孔的研究,分析了TC1孔的粒度、TOC、TN、C/N、Fe/Mn、Sr/Ba以及环境磁学参数等环境代用指标,基本上获得了这一地区2万年以来的环境变化记录。结果显示约19 800~18 000 Cal aBP的温度下降在各指标中具有明显的反映;约16 000 Cal aBP左右,温度在一次跃动上升之后,随即出现急剧下降;约15 200~12 000 Cal aBP,是降温之后的缓慢回升过程;约12 000~9 500 Cal aBP,各种指标均显示湖区环境处于不适宜阶段,特别是11 600~10 400 Cal aBP,湖区环境显著恶化。进入全新世后,湖区环境经历了3次明显的暖期(约9 500~7 600 Cal aBP、约6 800~5 800 Cal aBP、约4 800~3 800 Cal aBP) 和2次冷期(约7 600~6 800 Cal aBP、约5 800~4 800 Cal aBP),呈现出暖干/冷湿的交替规律,具有南亚季风(西南季风) 区气候变化的特征。沉错湖区2万年来的气候环境变化序列中的某些特征时段与格陵兰冰芯记录和青藏高原其他记录相比具有较好的一致性,反映了湖区及藏南地区的气候环境演变特征具有全球性特征。  相似文献   
93.
气候变暖背景下扎龙湿地气候变化特征   总被引:3,自引:1,他引:3  
基于扎龙湿地1955—2004年逐日气温和降水量资料,采用滑动平均、趋势分析、小波分析和Mann-Kendall及Yamamoto检验等方法,探讨了扎龙湿地近50年的气候变化特征。结果表明:①研究时段内扎龙湿地年及四季平均气温均呈上升趋势,年平均气温在1988年发生了一次明显的突变,其后气温达到一个更显著的增暖时期,20世纪90年代以来的增温非常显著,是50年以来的最高温期;②扎龙湿地年及各季降水量除春季外均呈减少趋势,秋季降水减少趋势最显著,研究时段内没有明显的突变过程;③20世纪80年代中期之后扎龙湿地暖冬和热夏事件的发生频率和强度显著增加,大气湿润度在减小,气候在向暖干方向发展。  相似文献   
94.
Atmospheric circulation patterns in southern Chile (42° 30′ S) were studied in order to determine and analyse the most characteristic synoptic types and their recent trends, as well as to gain an understanding of how they are associated with low-frequency variability patterns. According to the Jenkinson and Collison (J&C) classification method, a 16-point grid of sea-level pressure data was employed. The findings reveal that some synoptic types show statistically significant trends with a 95% confidence level, positively for anticyclonic westerly hybrids (AW) and advective types for third and fourth quadrant wind flows (W, NW, and N) and negatively for SW and cyclonic hybrids (CS and CSW). A model has been constructed of the linear regression of some weather types with teleconnections that most affect Chile: the undetermined types (U), AW were associated with El Niño or the warm phase of the Pacific Decadal Oscillation (PDO), whereas the cyclonic northerly and cyclonic northeasterly types (CN and CNE) were associated with La Niña or cool phase of the PDO. The weather types associated with Antarctic Oscillation (AAO) in its positive phase are anticyclonic northerly and northeasterly and northerly advection types, while in its negative phase are cyclonic southwesterly and advection types.  相似文献   
95.
Here we simulate dryland agriculture in the United States in order to assess potential future agricultural production under a set of general circulation model (GCM)-based climate change scenarios. The total national production of three major grain crops—corn, soybeans, and winter wheat—and two forage crops—alfalfa and clover hay—is calculated for the actual present day core production area (CPA) of each of these crops. In general, higher global mean temperature (GMT) reduces production and higher atmospheric carbon dioxide concentration ([CO2]) increases production. Depending on the climatic change scenarios employed overall national production of the crops studied changes by up to plus or minus 25% from present-day levels. Impacts are more significant regionally, with crop production varying by greater than ±50% from baseline levels. Analysis of currently possible production areas (CPPAs) for each crop indicates that the regions most likely to be affected by climate change are those on the margins of the areas in which they are currently grown. Crop yield variability was found to be primarily influenced by local weather and geographic features rather than by large-scale changes in climate patterns and atmospheric composition. Future US agronomic potential will be significantly affected by the changes in climate projected here. The nature of the crop response will depend primarily on to what extent precipitation patterns change and also on the degree of warming experienced.  相似文献   
96.
During a haze event in Baltimore, U.S.A. from July 6 to 8, 2002, smoke from forest fires in the Québec region (Canada), degraded air quality and impacted upon local climate, decreasing solar radiation and air temperature. The smoke particles in and above the atmospheric boundary layer (ABL) served as a tracer and provided a unique opportunity to investigate the ABL structure, especially entrainment. Elastic backscatter lidar measurements taken during the haze event distinctly reveal the downward sweeps (or wisps) of smoke-laden air from the free atmosphere into the ABL. Visualisations of mechanisms such as dry convection, the entrainment process, detrainment, coherent entrainment structures, and mixing inside the ABL, are presented. Thermals overshooting at the ABL top are shown to create disturbances in the form of gravity waves in the free atmosphere aloft, as evidenced by a corresponding ripple structure at the bottom of the smoke layer. Lidar data, aerosol ground-based measurements and supporting meteorological data are used to link free atmosphere, mixed-layer and ground-level aerosols. During the peak period of the haze event (July 7, 2002), the correlation between time series of elastic backscatter lidar data within the mixed layer and the scattering coefficient from a nephelometer at ground level was found to be high (R=0.96 for z =324 m, and R=0.89 for z=504 m). Ground-level aerosol concentration was at a maximum about 2 h after the smoke layer intersected with the growing ABL, confirming that the wisps do not initially reach the ground.  相似文献   
97.
A fast coupled global climate model (CGCM) is used to study the sensitivity of El Ni?o Southern Oscillation (ENSO) characteristics to a new interactive flux correction scheme. With no flux correction applied our CGCM reveals typical bias in the background state: for instance, the cold tongue in the tropical east Pacific becomes too cold, thus degrading atmospheric sensitivity to variations of sea surface temperature (SST). Sufficient atmospheric sensitivity is essential to ENSO. Our adjustment scheme aims to sustain atmospheric sensitivity by counteracting the SST drift in the model. With reduced bias in the forcing of the atmosphere, the CGCM displays ENSO-type variability that otherwise is absent. The adjustment approach employs a one-way anomaly coupling from the ocean to the atmosphere: heat fluxes seen by the ocean are based on full SST, while heat fluxes seen by the atmosphere are based on anomalies of SST. The latter requires knowledge of the model??s climatological SST field, which is accumulated interactively in the spin-up phase (??training??). Applying the flux correction already during the training period (by utilizing the evolving SST climatology) is necessary for efficiently reducing the bias. The combination of corrected fluxes seen by the atmosphere and uncorrected fluxes seen by the ocean implies a restoring mechanism that counteracts the bias and allows for long stable integrations in our CGCM. A suite of sensitivity runs with varying training periods is utilized to study the effect of different levels of bias in the background state on important ENSO properties. Increased duration of training amplifies the coupled sensitivity in our model and leads to stronger amplitudes and longer periods of the Nino3.4 index, increased emphasis of warm events that is reflected in enhanced skewness, and more pronounced teleconnections in the Pacific. Furthermore, with longer training durations we observe a mode switch of ENSO in our model that closely resembles the observed mode switch related to the mid-1970s ??climate shift??.  相似文献   
98.
Climate is one factor that determines the potential range of malaria. As such, climate change may work with or against efforts to bring malaria under control. We developed a model of future climate suitability for stable Plasmodium falciparum malaria transmission in Zimbabwe. Current climate suitability for stable malaria transmission was based on the MARA/ARMA model of climatic constraints on the survival and development of the Anopheles vector and the Plasmodium falciparum malaria parasite. We explored potential future geographic distributions of malaria using 16 projections of climate in 2100. The results suggest that, assuming no future human-imposed constraints on malaria transmission, changes in temperature and precipitation could alter the geographic distribution of malaria in Zimbabwe, with previously unsuitable areas of dense human population becoming suitable for transmission. Among all scenarios, the highlands become more suitable for transmission, while the lowveld and areas with low precipitation show varying degrees of change, depending on climate sensitivity and greenhouse gas emission stabilization scenarios, and depending on the general circulation model used. The methods employed can be used within or across other African countries.  相似文献   
99.
Accurately representing complex land-surface processes balancing complexity and realism remains one challenge that the weather modelling community is facing nowadays. In this study, a photosynthesis-based Gas-exchange Evapotranspiration Model (GEM) is integrated into the Noah land-surface model replacing the traditional Jarvis scheme for estimating the canopy resistance and transpiration. Using 18-month simulations from the High Resolution Land Data Assimilation System (HRLDAS), the impact of the photosynthesis-based approach on the simulated canopy resistance, surface heat fluxes, soil moisture, and soil temperature over different vegetation types is evaluated using data from the Atmospheric Radiation Measurement (ARM) site, Oklahoma Mesonet, 2002 International H2O Project (IHOP_2002), and three Ameriflux sites. Incorporation of GEM into Noah improves the surface energy fluxes as well as the associated diurnal cycle of soil moisture and soil temperature during both wet and dry periods. An analysis of midday, average canopy resistance shows similar day-to-day trends in the model fields as seen in observed patterns. Bias and standard deviation analyses for soil temperature and surface fluxes show that GEM responds somewhat better than the Jarvis scheme, mainly because the Jarvis approach relies on a parametrised minimum canopy resistance and meteorological variables such as air temperature and incident radiation. The analyses suggest that adding a photosynthesis-based transpiration scheme such as GEM improves the ability of the land-data assimilation system to simulate evaporation and transpiration under a range of soil and vegetation conditions.  相似文献   
100.
We investigated the acidity and concentrations of water-soluble ions in PM2.5 aerosol samples collected from an urban site in Beijing and a rural site in Gucheng, Hebei Province from November 2016 to January 2017 to gain an insight into the formation of secondary inorganic species. The average SO42–, NO3, and NH4+ concentrations were 8.3, 12.5, and 14.1 μg m–3, respectively, at the urban site and 14.0, 14.2, and 24.2 μg m–3, respectively, at the rural site. The nitrogen and sulfur oxidation ratios in urban Beijing were correlated with relative humidity (with correlation coefficient r = 0.79 and 0.67, respectively) and the aerosol loadings. Based on a parameterization model, we found that the rate constant of the heterogeneous reactions for SO2 on polluted days was about 10 times higher than that on clear days, suggesting that the heterogeneous reactions in the aerosol water played an essential role in haze events. The ISORROPIA II model was used to predict the aerosol pH, which had a mean (range) of 5.0 (4.9–5.2) and 5.3 (4.6–6.3) at the urban and rural site, respectively. Under the conditions with this predicted pH value, oxidation by dissolved NO2 and the hydrolysis of N2O5 may be the major heterogeneous reactions forming SO42– and NO3 in haze. We also analyzed the sensitivity of the aerosol pH to changes in the concentrations of SO42–, NO3, and NH4+ under haze conditions. The aerosol pH was more sensitive to the SO42– and NH4+ concentrations with opposing trends, than to the NO3 concentrations. The sensitivity of the pH was relatively weak overall, which was attributed to the buffering effect of NH3 partitioning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号