首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   7篇
  国内免费   3篇
测绘学   11篇
大气科学   19篇
地球物理   42篇
地质学   53篇
海洋学   6篇
天文学   30篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   6篇
  2017年   5篇
  2016年   10篇
  2015年   1篇
  2014年   6篇
  2013年   8篇
  2012年   5篇
  2011年   6篇
  2010年   9篇
  2009年   6篇
  2008年   7篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1984年   2篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1977年   3篇
  1974年   2篇
  1973年   3篇
  1971年   1篇
排序方式: 共有161条查询结果,搜索用时 15 毫秒
101.
In situ radioelemental (K, U and Th) analysis and heat production estimates have been made at 59 sites in the Kerala Khondalite Block (KKB) of the Southern Granulite Province (SGP) of India. Together with the in situ analyses on granulites and gneisses previously reported from 28 sites, and heat production estimated from the published geochemical analyses on granites and syenites of the KKB, the new data set allows good characterization of heat production for the major granulite facies rocks and granitoids of the KKB. Garnet biotite gneisses are characterized by high levels of Th and U, with mean values of 60 and 3 ppm, respectively. Khondalites, leptynites and charnockites have slightly lower levels of Th (23, 20 and 22 ppm, respectively) and U (2.9, 2.4 and 0.9 ppm, respectively). The mean K, U, Th abundances for the granites, leucogranites and granitic gneisses ranges from 3.9 to 4.3%, 2.6 to 4.3 ppm, 22 to 50 ppm respectively, and for the syenites 4.8%, 2 ppm and 5.7 ppm. Mean radiogenic heat production values for garnet–biotite gneiss, khondalite, leptynite and charnockite are 5.5, 2.7, 2.4 and 2.2 μW m−3, respectively. For the granites, leucogranites, granitic gneisses and syenites it is 2.6, 3.4, 4.6 and 1.4 μW m−3, respectively. Heat production of granulite facies rocks, which are the most abundant rocks in KKB, correlate well with Th, but less with U, suggesting that variation is caused by Th and U bearing accessory minerals such as monazite and zircon. The high heat production of the KKB granulites are in contrast to the low heat production of the Late Archaean granulites of the Northern Block (NB) of the SGP which are highly depleted in radioelements and also the granulites of Madurai Block (MB) that have higher radioelemental abundances than in the granulites of the NB. The high heat production of the KKB granulites could be due to the nature of protoliths and/or metasomatism associated with Neoproteroic- to- Pan African alkaline magmatic activity represented by alkali granite and syenite–carbonatite emplacements and emplacement of pegmatites.  相似文献   
102.
Whole-rock Sm-Nd isochron ages are reported for two stratiform meta-anorthosite complexes emplaced into the Archean supracrustal-gneiss association in the amphibolite facies terrain around Holenarsipur, in the Dharwar craton, South India. While these metaperidotite-pyroxenite-gabbro-anorthosite complexes are petrologically and geochemically similar, they differ in the intensity of tectonic fabric developed during the late Archean (c. 2.5 Ga) deformation. They also differ in their whole-rock Sm-Nd isochron ages and initial Nd isotopic compositions: 3.285 ± 0.17 Ga,ɛNd0.82 ± 0.78 for the Honnavalli metaanorthosite complex from a supracrustal enclave in the low-strain zone, and 2.495 ± 0.033 Ga, ɛNd = -2.2 ± 0.3 for the Dodkadnur meta-anorthosites from the high-strain southern arm of the Holenarsipur Supracrustal Belt (HSB). We interpret these results as indicating that the magmatic protoliths of both meta-anorthosite complexes were derived from a marginally depleted mantle at c. 3.29 Ga but only the Dodkadnur rocks were isotopically reequilibrated on a cm-scale about 800 Ma later presumably due to the development of strong penetrative fabrics in them during Late Archean thermotectonic event around 2.5 Ga. Our results set a younger age limit at c. 3.29 Ga for the supracrustal rocks of the HSB in the Dharwar craton.  相似文献   
103.
Fracture propagation plays a key role for a number of applications of interest to the scientific community, from dynamic fracture processes like spallation and fragmentation in metals to failure of ceramics, airplane wings, etc. Simulations of material deformation and fracture propagation rely on accurate knowledge of material characteristics such as material strength and the amount of energy being dissipated during the fracture process. Within the combined finite-discrete element method (FDEM) framework material fracture behavior is typically described through a parametrized softening curve, which defines a stress-strain relationship unique to each material. We apply the Fourier amplitude sensitivity test to explore how each of these parameters influences the simulated damage processes and to determine the key input parameters that have the most impact on the model response. We present several sensitivity numerical experiments for the simulation of a split Hopkinson pressure bar (SHPB) test for weathered granite samples using different combinations of model parameters. We validate the obtained results against SHPB experimental data. The experiments show that the model is mostly sensitive to parameters related to tensile and shear strengths, even in the presence of other parameter perturbations. The results suggest that the specification of tensile and shear strengths at the interfaces dominate the stress-time history of the FDEM simulation of SHPB test.  相似文献   
104.
Assessment of uncertainty due to inadequate data and imperfect geological knowledge is an essential aspect of the subsurface model building process. In this work, a novel methodology for characterizing complex geological structures is presented that integrates dynamic data. The procedure results in the assessment of uncertainty associated with the predictions of flow and transport. The methodology is an extension of a previously developed pattern search-based inverse method that models the spatial variation in flow parameters by searching for patterns in an ensemble of reservoir models. More specifically, the pattern-searching algorithm is extended in two directions: (1) state values (such as piezometric head) and parameters (such as conductivities) are simultaneously and sequentially estimated, which implies that real-time assimilation of dynamic data is possible as in ensemble filtering approaches; and (2) both the estimated parameter and state variables are considered when pattern searching is implemented. The new scheme results in two main advantages—better characterization of parameters, especially for delineating small scale features, and an ensemble of head states that can be used to update the parameter field using the dynamic data at the next instant, without running expensive flow simulations. An efficient algorithm for pattern search is developed, which works with a flexible search radius and can be optimized for the estimation of either large- or small-scale structures. Synthetic examples are employed to demonstrate the effectiveness and robustness of the proposed approach.  相似文献   
105.
A 40 m × 20 m mowed, grass hillslope adjacent to a headwater stream within a 26‐ha watershed in east‐central Pennsylvania, USA, was instrumented to identify and map the extent and dynamics of surface saturation (areas with the water table at the surface) and surface runoff source areas. Rainfall, stream flow and surface runoff from the hillslope were recorded at 5‐min intervals from 11 August to 22 November 1998, and 13 April to 12 November 1999. The dynamics of the water table (0 to 45 cm depth from the soil surface) and the occurrence of surface runoff source areas across the hillslope were recorded using specially designed subsurface saturation and surface runoff sensors, respectively. Detailed data analyses for two rainfall events that occurred in August (57·7 mm in 150 min) and September (83·6 mm in 1265 min) 1999, illustrated the spatial and temporal dynamics of surface saturation and surface runoff source areas. Temporal data analyses showed the necessity to measure the hillslope dynamics at time intervals comparable to that of rainfall measurements. Both infiltration excess surface runoff (runoff caused when rainfall intensity exceeds soil infiltration capacity) and saturation excess surface runoff (runoff caused when soil moisture storage capacity is exceeded) source areas were recorded during these rainfall events. The August rainfall event was primarily an infiltration excess surface runoff event, whereas the September rainfall event produced both infiltration excess and saturation excess surface runoff. Occurrence and disappearance of infiltration excess surface runoff source areas during the rainfall events appeared scattered across the hillslope. Analysis of surface saturation and surface runoff data showed that not all surface saturation areas produced surface runoff that reached the stream. Emergence of subsurface flow to the surface during the post‐rainfall periods appeared to be a major flow process dominating the hillslope after the August rainfall event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
106.
107.
A nonparametric method for resampling multiseason hydrologic time series is presented. It is based on the idea of rank matching, for simulating univariate time series with strong and/or long‐range dependence. The rank matching rule suggests concatenating with higher likelihood those blocks that match at their ends. In the proposed method, termed ‘multiseason matched block bootstrap’, nonoverlapping within‐year blocks of hydrologic data (formed from the observed time series) are conditionally resampled using the rank matching rule. The effectiveness of the method in recovering various statistical attributes, including the dependence structure from finite samples generated from a known population, is demonstrated through a two‐level hypothetical Monte Carlo simulation experiment. The method offers enough flexibility to the modeller and is shown to be appropriate for modelling hydrologic data that display strong dependence, nonlinearity and/or multimodality in the time series depicting the hydrologic process. The method is shown to be more efficient than the nonparametric ‘k‐nearest neighbor bootstrap’ method in simulating the monthly streamflows that exhibit a complex dependence structure and bimodal marginal probability density. Even with short block sizes, this bootstrap method is able to predict the drought characteristics reasonably accurately. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
108.
109.
Stable carbon and oxygen isotopic compositions of essentially unmetamorphosed Archean (> 2.6 Gyr old) cherts and carbonates of the Dharwar Sequence of southern India, from the northernmost part of the Dharwar-Shimoga supracrustal belt (Kalche and Nagargali), have been determined. The cherts from the Nagargali area, which preserve oolitic texture and cryptocrystalline silica, show highly enriched δ18O values ranging from 28 to 31.4%o relative to SMOW. Such values are the highest yet reported from Archean nondetrital sediments, but are similar to those of modern marine cherts. On the assumption of a seawater δ18O of 0%0, calculation of temperature based on the maximum δ18O value of 31.4%0 yields a value of 40°C. This is significantly less than 70–80°C reported for the Archean oceans based on cherts and chert-phosphate pairs. Diagenetically recrystallized microcrystalline chert-dolomite pairs of Kalche area exhibit a range of oxygen isotopic ratios similar to those reported for Archean cherts and carbonates from other parts of the world. The temperature of diagenesis is estimated to be about 68°C.  相似文献   
110.
We examined the applicability of the critical‐source area (CSA) concept to the dairy‐grazed 192‐ha Upper Toenepi catchment and its 8·7‐ha Kiwitahi sub‐catchment, New Zealand. We evaluated if phosphorus (P) transport from land into stream is dominated by saturation‐excess (SE) and infiltration‐excess (IE) runoff during stormflow and by sub‐surface (<1·5 m depth) flows during baseflow. We measured stream flow and shallow groundwater levels, collected monthly stream, tile drain (TDA) and groundwater samples, and flow‐proportional stream samples from the Kiwitahi sub‐catchment, and determined their dissolved reactive phosphorus (DRP) and total phosphorus (TP) concentrations. In the Kiwitahi sub‐catchment, during storm events, IE contributions were significant. Contributions from SE appeared significant in the Upper Toenepi catchment. However, in both catchments, sub‐surface contributions dominated stormflow and baseflow periods. Absence of water table at the surface and the water table gradient towards the stream indicated that P transport during events was not limited to surface runoff. The dynamics of the groundwater table and the occurrence of SE areas were influenced by proximity to the stream and hillslope positions. Baseflow accounted for 42% of the annual flow in the Kiwitahi sub‐catchment, and contributed 37 and 52% to the DRP and TP loads, respectively. The P transport during baseflow appeared equally important as P losses from CSAs during stormflow. The close resemblance in P levels between groundwater and stream samples during baseflow demonstrates the importance of shallow groundwater for stream flow. In the Upper Toenepi catchment, contributions from effluent ponds (EFFs) dominated P loads. Management strategies should focus on controlling P release from EFFs, and on decreasing Olsen P concentrations in soil to minimize leaching of P via sub‐surface flow to streams. Research is needed to quantify the role of sub‐surface flow as well as to expand management strategies to minimize P transfers during stormflow and baseflow conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号