首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   14篇
  国内免费   10篇
测绘学   3篇
大气科学   6篇
地球物理   68篇
地质学   68篇
海洋学   21篇
天文学   53篇
自然地理   20篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   5篇
  2019年   7篇
  2018年   7篇
  2017年   4篇
  2016年   6篇
  2015年   9篇
  2014年   8篇
  2013年   8篇
  2012年   7篇
  2011年   6篇
  2010年   7篇
  2009年   11篇
  2008年   10篇
  2007年   9篇
  2006年   8篇
  2005年   3篇
  2004年   8篇
  2003年   9篇
  2002年   11篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   8篇
  1997年   4篇
  1996年   4篇
  1995年   6篇
  1994年   2篇
  1993年   6篇
  1989年   2篇
  1987年   5篇
  1985年   8篇
  1984年   2篇
  1983年   6篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1972年   3篇
  1970年   2篇
  1968年   1篇
  1934年   1篇
  1929年   1篇
排序方式: 共有239条查询结果,搜索用时 15 毫秒
91.
The three-dimensional configuration of sedimentary landforms in intertidal environments represents a major control on regional hydrodynamics. It modulates the location and magnitude of forces exerted by tidal currents and waves on the landform itself and on engineered infrastructure such as sea walls or coastal defences. Furthermore, the effect is reflexive, with the landforms representing an integrated, long-term response to the forces exerted on them. There is a strong reciprocal linkage between form and process (morphodynamics) in the coastal zone which is significantly lagged and poorly understood in the case of cohesive, vegetated sediments in the intertidal zone. A method is presented that links the geometric properties of the tidal flat–salt marsh interface to the history and potential future evolution of that interface. A novel quantitative classification scheme that is capable of separating marsh margins based on their functional form is developed and is applied to demonstrate that relationships exist between landform configuration and morphological evolution across a regional extent. This provides evidence of a spatially variable balance between self-organized and external controls on morphodynamic evolution and the first quantitative basis for a quick assessment procedure for likely future dynamism. © 2019 John Wiley & Sons, Ltd.  相似文献   
92.
We present an analysis of 19 μm spectra of Io’s SO2 atmosphere from the TEXES mid-infrared high spectral resolution spectrograph on NASA’s Infrared Telescope Facility, incorporating new data taken between January 2005 and June 2010 and a re-analysis of earlier data taken from November 2001 to January 2004. This is the longest set of contiguous observations of Io’s atmosphere using the same instrument and technique thus far. We have fitted all 16 detected blended absorption lines of the ν2 SO2 vibrational band to retrieve the subsolar values of SO2 column abundance and the gas kinetic temperature. By incorporating an existing model of Io’s surface temperatures and atmosphere, we retrieve sub-solar column densities from the disk-integrated data. Spectra from all years are best fit by atmospheric temperatures <150 K. Best-fit gas kinetic temperatures on the anti-Jupiter hemisphere, where SO2 gas abundance is highest, are low and stable, with a mean of 108 (±18) K. The sub-solar SO2 column density between longitudes of 90–220° varies from a low of 0.61 (±0.145) × 10?17 cm?2, near aphelion in 2004, to a high of 1.51 (±0.215) × 1017 cm?2 in 2010 when Jupiter was approaching its early 2011 perihelion. No correlation in the gas temperature was seen with the increasing SO2 column densities outside the errors.Assuming that any volcanic component of the atmosphere is constant with time, the correlation of increasing SO2 abundance with decreasing heliocentric distance provides good evidence that the atmosphere is at least partially supported by frost sublimation. The SO2 frost thermal inertias and albedos that fit the variation in atmospheric density best are between 150–1250 W m?2 s?1/2 K?1 and 0.613–0.425 respectively. Photometric evidence favors albedos near the upper end of this range, corresponding to thermal inertias near the lower end. This relatively low frost thermal inertia produces larger amplitude seasonal variations than are observed, which in turn implies a substantial additional volcanic atmospheric component to moderate the amplitude of the seasonal variations of the total atmosphere on the anti-Jupiter hemisphere. The seasonal thermal inertia we measure is unique both because it refers exclusively to the SO2 frost surface component, and also because it refers to relatively deep subsurface layers (few meters) due to the timescales of many years, while previous studies have determined thermal inertias at shallower levels (few centimeters), relevant for timescales of ~2 h (eclipse) or ~2 days (diurnal curves).  相似文献   
93.
大震下被动与智能隔震结构动力可靠度的对比   总被引:9,自引:0,他引:9  
对被动及智能隔震结构在“大震”条件下的动力可靠度进行探讨。将被动及智能隔震体系均取作弹塑性模型,并用退化Bouc-W en滞变模型描述上部结构的恢复力,用非退化Bouc-W en模型描述隔震层的恢复力。采用虚拟激励法计算结构的随机响应,根据我国抗震规范中“大震不倒”的设防目标,采用各层最大层间位移峰值响应和累积滞变耗能构造双参数的随机疲劳累积损伤指数,作为功能状态指标。假定各层失效相关,用串联系统计算体系动力可靠度。通过数值算例,对比了被动隔震、智能隔震与非隔震体系的条件失效概率,从动力可靠度角度显示了智能隔震体系的减震优势。  相似文献   
94.
The final assembly of the Mesoproterozoic supercontinent Nuna was marked by the collision of Laurentia and Australia at 1.60 Ga, which is recorded in the Georgetown Inlier of NE Australia. Here, we decipher the metamorphic evolution of this final Nuna collisional event using petrostructural analysis, major and trace element compositions of key minerals, thermodynamic modelling, and multi-method geochronology. The Georgetown Inlier is characterised by deformed and metamorphosed 1.70–1.62 Ga sedimentary and mafic rocks, which were intruded by c. 1.56 Ga old S-type granites. Garnet Lu–Hf and monazite U–Pb isotopic analyses distinguish two major metamorphic events (M1 at c. 1.60 Ga and M2 at c. 1.55 Ga), which allows at least two composite fabrics to be identified at the regional scale—c. 1.60 Ga S1 (consisting in fabrics S1a and S1b) and c. 1.55 Ga S2 (including fabrics S2a and S2b). Also, three tectono-metamorphic domains are distinguished: (a) the western domain, with S1 defined by low-P (LP) greenschist facies assemblages; (b) the central domain, where S1 fabric is preserved as medium-P (MP) amphibolite facies relicts, and locally as inclusion trails in garnet wrapped by the regionally dominant low-P amphibolite facies S2 fabric; and (c) the eastern domain dominated by upper amphibolite to granulite facies S2 foliation. In the central domain, 1.60 Ga MP–medium-T (MT) metamorphism (M1) developed within the staurolite–garnet stability field, with conditions ranging from 530550°C at 67 kbar (garnet cores) to 620650°C at 89 kbar (garnet rims), and it is associated with S1 fabric. The onset of 1.55 Ga LP–high-T (HT) metamorphism (M2) is marked by replacement of staurolite by andalusite (M2a/D2a), which was subsequently pseudomorphed by sillimanite (M2b/D2b) where granite and migmatite are abundant. P–T conditions ranged from 600 to 680°C and 4–6 kbar for the M2b sillimanite stage. 1.60 Ga garnet relicts within the S2 foliation highlight the progressive obliteration of the S1 fabric by regional S2 in the central zone during peak M2 metamorphism. In the eastern migmatitic complex, partial melting of paragneiss and amphibolite occurred syn- to post- S2, at 730–770°C and 6–8 kbar, and at 750–790°C and 6 kbar, respectively. The pressure–temperature–deformation–time paths reconstructed for the Georgetown Inlier suggest a c. 1.60 Ga M1/D1 event recorded under greenschist facies conditions in the western domain and under medium-P and medium-T conditions in the central domain. This event was followed by the regional 1.56–1.54 Ga low-P and high-T phase (M2/D2), extensively recorded in the central and eastern domains. Decompression between these two metamorphic events is ascribed to an episode of exhumation. The two-stage evolution supports the previous hypothesis that the Georgetown Inlier preserves continental collisional and subsequent thermal perturbation associated with granite emplacement.  相似文献   
95.
Sedimentologic and biostratigraphic evidence is used to develop a geochemical model for Great Salt Lake, Utah, extending back some 30,000 yrs. B.P. Hydrologie conditions as defined by the water budget equation are characterized by a lake initially at a low, saline stage, rising by about 17,000 yrs. B.P. to fresh water basin-full conditions (Bonneville level) and then, after about 15,000 yrs. B.P., dropping rapidly to a saline stage again, as exemplified by the present situation.Inflow composition has changed through time in response to the hydrologie history. During fresh-water periods high discharge inflow is dominated by calcium bicarbonate-type river waters; during saline stages, low discharge, NaCl-rich hydrothermal springs are significant solute sources. This evolution in lake composition to NaCl domination is illustrated by the massive mirabilite deposition, free of halite, following the rapid drawdown until about 8,000 years ago, while historic droughts have yielded principally halite.Hydrologic history can be combined with inferred inflow composition to derive concentration curves with time for each major solute in the lake. Calcium concentrations before the drawdown were controlled by calcite solubility, and afterwards by aragonite. Significant amounts of solutes are removed from the lake by diffusion into the sediments. Na+, Cl? and SO42? are also involved in salt precipitation. By including pore fluid data, a surprisingly good fit has been obtained between solute input over the time period considered and the amounts actually found in lake brines, pore fluids, salt beds and sediments. Excess amounts are present for calcium, carbonate and silica, indicating detrital input.  相似文献   
96.
We present polarization observations of 28 compact steep-spectrum sources made with the upgraded MERLIN at 5 GHz. With an angular resolution of 60 milliarcsec and rms noise levels of about 0.1 mJy beam−1, the total intensity images reveal new details in many of these sources. A few of the more extended lobes and jets are quite highly polarized, but more than half of the components are completely unpolarized. Comparison with published data implies that this is due to Faraday depolarization, probably occurring in the surrounding medium with nB  ∼ 1 cm−3μG. The high resolution of the present observations implies that the variations in Faraday rotation, probably due to magnetic field tangling, occur on scales of less than about 100 pc.  相似文献   
97.
Extreme precipitation can have profound consequences for communities, resulting in natural hazards such as rainfall-triggered landslides that cause casualties and extensive property damage. A key challenge to understanding and predicting rainfall-triggered landslides comes from observational uncertainties in the depth and intensity of precipitation preceding the event. Practitioners and researchers must select from a wide range of precipitation products, often with little guidance. Here we evaluate the degree of precipitation uncertainty across multiple precipitation products for a large set of landslide-triggering storm events and investigate the impact of these uncertainties on predicted landslide probability using published intensity–duration thresholds. The average intensity, peak intensity, duration, and NOAA-Atlas return periods are compared ahead of 177 reported landslides across the continental United States and Canada. Precipitation data are taken from four products that cover disparate measurement methods: near real-time and post-processed satellite (IMERG), radar (MRMS), and gauge-based (NLDAS-2). Landslide-triggering precipitation was found to vary widely across precipitation products with the depth of individual storm events diverging by as much as 296 mm with an average range of 51 mm. Peak intensity measurements, which are typically influential in triggering landslides, were also highly variable with an average range of 7.8 mm/h and as much as 57 mm/h. The two products more reliant upon ground-based observations (MRMS and NLDAS-2) performed better at identifying landslides according to published intensity–duration storm thresholds, but all products exhibited hit ratios of greater than 0.56. A greater proportion of landslides were predicted when including only manually verified landslide locations. We recommend practitioners consider low-latency products like MRMS for investigating landslides, given their near-real time data availability and good performance in detecting landslides. Practitioners would be well-served considering more than one product as a way to confirm intense storm signals and minimize the influence of noise and false alarms.  相似文献   
98.
To help constrain the spatial variation of oxygen on Jupiter's satellite Ganymede, and hence have more clues to its mode of production and stability, we have obtained spectral data from the Faint Object Spectrograph (FOS) for a single pole-to-pole latitudinal strip, along with several Wide Field Planetary Camera 2 (WFPC2) images in three narrow band visible filters. All observations were made of the trailing hemisphere. In the FOS data we observe both visible absorptions at 0.577 and 0.627 μm, associated with dense-phase oxygen (compressed gases, liquids, or solids). Filter options limited the WFPC2 observations to wavelengths near the weaker oxygen absorption at 0.627 μm. These observations suggest that the dense-phase or dimer oxygen form is predominantly found in equatorial and mid-latitudes. The spectroscopic absorption feature appears in both bright and dark terrains but may be somewhat weaker in dark regions, which is consistent with the smaller mean photon path length in the surface in darker areas. Therefore, the abundance of oxygen appears more dependent on latitude and longitude constraints than surface albedo. At the highest latitudes, where the ratio spectra have a strong upturn toward the blue, the oxygen bands do not appear. This relation suggests that dimer oxygen and ozone (as seen by Galileo) have opposite trends with latitude. Possible causes include competition or variation in the preferred stable form, which depends on temperature, solar ultraviolet flux, and/or surface age; enhancement of O3at the poles due to plasma interactions; or viewing geometry effects that reduce the oxygen features at the poles when observed from Earth. The predominantly equatorial feature supports the production of O2through plasma bombardment and favors defect trapping over physical adsorption of the dimer molecules in the surface. We briefly consider the implications of Ganymede's magnetosphere for our understanding of O2and O3distribution on Ganymede.  相似文献   
99.
The Phytoplankton of the Menai Straits   总被引:1,自引:0,他引:1  
  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号