首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
地质学   34篇
海洋学   2篇
天文学   1篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2006年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
排序方式: 共有37条查询结果,搜索用时 140 毫秒
21.
A quantitative petrogenetic grid for pelitic schists in the system KFMASH that includes the phases garnet, chlorite, biotite, chloritoid, cordierite, staurolite, talc, kyanite, andalusite, sillimanite, and pyrophyllite (with quartz, H2O and muscovite or K-feldspar in excess) is presented. The grid is based on thermodynamic data of Berman et al. (1985) and Berman (1988) for endmember KFASH and KMASH equilibria and natural Fe-Mg partitioning for the KFMASH system. Calculation of P-T slopes and the change in Fe/(Fe+Mg) along reactions in the KFMASH system were made using the Gibbs method. In addition, the effect on the grid of MnO and CaO is evaluated quantitatively. The resulting grid is consistent with typical Buchan and Barrovian parageneses at medium to high grades. At low grades, the grid predicts an extensive stability field for the paragenesis chloritoid+biotite which arises because of the unusual facing of the reaction chloritoid+biotite + quartz+H2O = garnet+chlorite+muscovite, which proceeds to the right with increasing T in the KFMASH system. However, the reaction proceeds to the left with increasing T in the MnKFASH system so the assemblage chloritoid + biotite is restricted to bulk compositions with high Fe/(Fe+Mg+Mn). Typical metapelites will therefore contain garnet+chlorite at low grades rather than chloritoid + biotite.  相似文献   
22.
The thermomagnetic torque, known to exist when a gas of polyatomic molecules experiences a temperature gradient in the presence of a magnetic field, has been investigated as a possible source of stellar rotational angular momentum. The effect does not appear to be significant during pre-mainsequence evolution. To influence stellar rotation a process must be capable of generating torques on the order of 1040 dyn cm–1, whereas the effect due to the thermomagnetic torque is only as large as 1017, dyn cm–1.  相似文献   
23.
We report the abundances and hydrogen-isotopic compositions (D/H ratios) of fatty acids extracted from hot-spring microbial mats in Yellowstone National Park. The terrestrial hydrothermal environment provides a useful system for studying D/H fractionations because the numerous microbial communities in and around the springs are visually distinct, separable, and less complex than those in many other aquatic environments. D/H fractionations between lipids and water ranged from −374‰ to +41‰ and showed systematic variations between different types of microbial communities. Lipids produced by chemoautotrophic hyperthermophilic bacteria, such as icosenoic acid (20:1), generally exhibited the largest and most variable fractionations from water (−374‰ to −165‰). This was in contrast to lipids characteristic of heterotrophs, such as branched, odd chain-length fatty acids, which had the smallest fractionations (−163‰ to +41‰). Mats dominated by photoautotrophs exhibited intermediate fractionations similar in magnitude to those expressed by higher plants. These data support the hypothesis that variations in lipid D/H are strongly influenced by central metabolic pathways. Shifts in the isotopic compositions of individual fatty acids across known ecological boundaries show that the isotopic signature of specific metabolisms can be recognized in modern environmental samples, and potentially recorded in ancient ones. Considering all sampled springs, the total range in D/H ratios is similar to that observed in marine sediments, suggesting that the trends observed here are not exclusive to the hydrothermal environment.  相似文献   
24.
The distribution and textural features of staurolite–Al2SiO5 mineral assemblages do not agree with predictions of current equilibrium phase diagrams. In contrast to abundant examples of Barrovian staurolite–kyanite–sillimanite sequences and Buchan‐type staurolite–andalusite–sillimanite sequences, there are few examples of staurolite–sillimanite sequences with neither kyanite nor andalusite anywhere in the sequence, despite the wide (~2.5 kbar) pressure interval in which they are predicted. Textural features of staurolite–kyanite or staurolite–andalusite mineral assemblages commonly imply no reaction relationship between the two minerals, at odds with the predicted first development (in a prograde sense) of kyanite or andalusite at the expense of staurolite in current phase diagrams. In a number of prograde sequences, the incoming of staurolite and either kyanite, in Barrovian sequences, or andalusite, in Buchan‐type sequences, is coincident or nearly so, rather than kyanite or andalusite developing upgrade of a significant staurolite zone as predicted. The width of zones of coexisting staurolite and either kyanite, in Barrovian sequences, or andalusite, in Buchan‐type sequences, is much wider than predicted in equilibrium phase diagrams, and staurolite commonly persists upgrade until its demise in the sillimanite zone. We argue that disequilibrium processes provide the best explanation for these mismatches. We suggest that kyanite (or andalusite) may develop independently and approximately contemporaneously with staurolite by metastable chlorite‐consuming reactions that occur at lower P–T conditions than the thermodynamically predicted staurolite‐to‐kyanite/andalusite reaction, a process that involves only modest overstepping (<15°C) of the stable chlorite‐to‐staurolite reaction and which is favoured, in the case of kyanite, by advantageous nucleation kinetics. If so, the pressure difference between Barrovian kyanite‐bearing sequences and Buchan andalusite‐bearing sequences could be ~1 kbar or less, in better agreement with the natural record. The unusual width of coexistence of staurolite and Al2SiO5 minerals, in particular kyanite and andalusite, can be accounted for by a combination of lack of thermodynamic driving force for conversion of staurolite to kyanite or andalusite, sluggish dissolution of staurolite, and possibly the absence of a fluid phase to catalyse reaction. This study represents an example of how kinetic controls on metamorphic mineral assemblage development have to be considered in regional as well as contact metamorphism.  相似文献   
25.
The cation exchange reaction Fe3Al2Si3O12 +KMg3AlSi3O10(OH)2 = Mg3Al2Si3O12+KFe3-AlSi3 O10(OH)2 has been investigated by determining the partitioning of Fe and Mg between synthetic garnet, (Fe, Mg)3Al2Si3O12, and synthetic biotite, K(Fe, Mg)3AlSi3O10(OH)2. Experimental results at 2.07 kbar and 550 °–800 ° C are consistent with In [(Mg/Fe) garnet/(Mg/Fe) biotite] = -2109/T(°K) +0.782. The preferred estimates for ¯H and ¯S of the exchange reaction are 12,454 cal and 4.662 e.u., respectively. Mixtures of garnet and biotite in which the ratio garnet/biotite=49/1 were used in the cation exchange experiments. Consequently the composition of garnet-biotite pairs could approach equilibrium values in the experiments with minimal change in garnet composition (few tenths of a mole percent). Equilibrium was demonstrated at each temperature by reversal of the exchange reaction. Numerical analysis of the experimental data yields a geothermometer for rocks containing biotite and garnet that are close to binary Fe-Mg compounds.  相似文献   
26.
Stratigraphic studies of pollen and macrofossils from six sites at different elevations in the White Mountains of New Hampshire demonstrate changes in the distributions of four coniferous tree species during the Holocene. Two species presently confined to low elevations extended farther up the mountain slopes during the early Holocene: white pine grew 350 m above its present limit beginning 9000 yr B.P., while hemlock grew 300–400 m above its present limit soon after the species immigrated to the region 7000 yr. B.P. Hemlock disappeared from the highest sites about 5000 yr B.P., but both species persisted at sites 50–350 m above their present limits until the Little Ice Age began a few centuries ago. The history of the two main high-elevation conifers is more difficult to interpret. Spruce and fir first occur near their present upper limits 9000 or 10,000 yr B.P. Fir persisted in abundance at elevations similar to those where it occurs today throughout the Holocene, while spruce became infrequent at all elevations from the beginning of the Holocene until 2000 yr B.P. These facts suggest a more complex series of changes than a mere upward shift of the modern environmental gradient. Nevertheless, we conclude that the minimum climatic change which would explain the upward extensions of hemlock and white pine is a rise in temperature, perhaps as much as 2°C. The interval of maximum warmth started 9000 yr B.P. and lasted at least until 5000 yr B.P., correlative with the Prairie Period in Minnesota.  相似文献   
27.
28.
Instrumental and spectral characteristics germane to chemical dating of monazite have been tested using the Cameca SX-100 at Rensselaer Polytechnic Institute. Statistical analysis demonstrates that, for trace element analysis, equal counting time on peak and background is required for optimal statistical precision, thus rendering impractical the procedure of fitting the entire spectrum to obtain background values. Energy shifts require shifting the detector voltage window between peak and background positions, and it is concluded that the differential auto PHA mode works optimally for this.Analyses of Pb-free phosphates, silicates, and oxides are used to measure spectral interferences with the PbMα peak and background positions. Backgrounds were modeled using both linear and exponential fits. It was found that the difference in background counts using the two fits varies with each of the five spectrometers examined, and that the high-pressure (3 bar) detectors show larger differences in exponential vs. linear peak-minus-background (P-B) values than the low-pressure (1 bar) detectors. In addition, every spectrometer requires a unique correction for every major element in monazite. An analytical protocol is presented that incorporates these results. This protocol was applied to several monazite standards to determine inter-spectrometer variability, and spectrometer reproducibility from session to session. It was found that the difference in composition (and age) between spectrometers on identical spots exceeds the 2 sigma standard error of the mean of composition (or age) on either spectrometer. This means that (a) additional sources of error beyond the counting statistics exist between spectrometers; (b) the precision of microprobe ages cannot be continuously improved by additional counting; and (c) the minimum realistic precision is on the order of ± 2–3% for monazites with around 1500–2000 ppm total Pb, or an additional absolute uncertainty of 20–50 ppm Pb.  相似文献   
29.
In principle, garnet growth rates may be calculated from 87Rb/86Sr and 87Sr/86Sr measurements in garnet subsamples and the surrounding rock matrix. Because of low Rb/Sr, garnet should passively record the matrix decay of 87Rb to 87Sr as a progressive increase in 87Sr/86Sr from core to rim. This concept was tested by collecting Rb‐Sr data for five garnet grains from four major orogenic belts: eastern Vermont (c. 380 Ma), western New Hampshire (c. 320 Ma), southern Chile (c. 75 Ma) and northwestern Italy (c. 35 Ma). Both normal Sr isotope zoning (increasing 87Sr/86Sr from core to rim) and inverse Sr zoning (decreasing 87Sr/86Sr from core to rim) were observed. Garnet and matrix isotope data commonly yielded grossly inaccurate model ages. Incomplete Rb and Sr equilibration among matrix minerals is invoked to explain the deviations between theoretical v. measured zoning patterns and the age disparities. Initially, the reactive matrix is dominated by rapidly equilibrating Rb‐rich mica, which imparts high 87Sr/86Sr values in garnet cores. Progressive participation of slower equilibrating Sr‐rich plagioclase buffers or even reduces 87Sr/86Sr, possibly leading to flat or decreasing 87Sr/86Sr from garnet cores to rims. Unusually high 87Sr/86Sr in garnet in combination with bulk matrix compositions causes erroneously young apparent ages, so metamorphic ages, growth rates, and associated heating and loading rates are likely suspect. Although Rb‐Sr may be the most susceptible because of the profound disparities between mica and feldspar, zircon reactivity might influence the Lu‐Hf system by up to a few per cent. The Sm‐Nd system seems generally immune to these effects. Pseudosection analysis and conventional garnet geochronology, which presume complete matrix equilibration during metamorphism, may require modification to account for differences between whole‐rock v. reactive matrix compositions.  相似文献   
30.
Quartz inclusions in garnet from samples collected from the staurolite zone in central New England are zoned in cathodoluminescence (CL). The CL intensity is interpreted to be a proxy for Ti concentration and the zoning attributed to Ti diffusion into the quartz grains driven by Ti exchange between quartz and enclosing garnet as a function of changing temperature. The CL zoning has been interpreted using a numerical diffusion model to constrain the time scales over which the diffusion has occurred. Temperature–time histories are sensitive to the presumed peak temperature but not to other model parameters. The total time of the metamorphic heating and cooling cycle from around 450?°C to the peak temperature (550–600?°C) back to 450?°C is surprisingly short and encompasses only 0.2–2 million years for peak temperatures of 600–550?°C. The metamorphism was accompanied by large-scale nappe and dome formation, and it is suggested that this occurred as a consequence of in-sequence thrusting resulting in a mid-crustal ductile duplex structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号