首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   4篇
  国内免费   3篇
测绘学   19篇
大气科学   11篇
地球物理   42篇
地质学   116篇
海洋学   2篇
天文学   37篇
自然地理   4篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2018年   16篇
  2017年   21篇
  2016年   11篇
  2015年   9篇
  2014年   18篇
  2013年   20篇
  2012年   8篇
  2011年   10篇
  2010年   11篇
  2009年   11篇
  2008年   7篇
  2007年   6篇
  2006年   7篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1967年   2篇
排序方式: 共有231条查询结果,搜索用时 15 毫秒
211.
212.
213.
214.
In this paper a new approach for fractal based dimensionality reduction of hyperspectral data has been proposed. The features have been generated by multiplying variogram fractal dimension value with spectral energy. Fractal dimension bears the information related to the shape or characteristic of the spectral response curves and the spectral energy bears the information related to class separation. It has been observed that, the features provide accuracy better than 90 % in distinguishing different land cover classes in an urban area, different vegetation types belonging to an agricultural area as well as various types of minerals belonging to the same parent class. Statistical comparison with some conventional dimensionality reduction methods validates the fact that the proposed method, having less computational burden than the conventional methods, is able to produce classification statistically equivalent to those of the conventional methods.  相似文献   
215.
Shallow carbonates are of utmost importance as potential sources of groundwater in karstified semi-arid terrains. Ground-Penetrating Radar (GPR) is being increasingly used as a prominent mapping tool in such environments. However, its potential in exploring and identifying shallow water-saturated zones (WSZs) in carbonates is constrained by the geoelectrical properties of carbonate soils as a function of moisture content. We report results of a case study that includes laboratory geoelectrical characterization and their comparison to in situ GPR attenuation measurements performed on Cretaceous Edwards Formation rudist mounds in central Texas, which we hypothesize as analogs for water-bearing formations in semi-arid karstified carbonate terrains. Dielectric measurements on field-collected rock samples carried out in the laboratory under controlled conditions of moisture saturation suggest that real and imaginary parts of dielectric constants of rocks with higher porosity and/or permeability have steeper dependence on pore moisture content; they produce better dielectric contrasts but allow shallower penetration. Our analyses suggest that within carbonates, dielectric contrasts improve with decrease in sounding frequency and/or increase in moisture content; and the relationship between dielectric permittivity and moisture content may be represented by 3rd order polynomial equations. GPR surveys using a wide-band 400 MHz antenna reveal subsurface mound morphologies with heights of ~ 1–2 m and basal diameters of ~ 8–10 m resembling outcrop analogs. Each mound appears to be composed of smaller amalgamated lithounits that seem geoelectrically similar. Amplitudes decays of the backscattered radar signal correlate to moisture distribution. Measuring the differences in signal attenuation allows differentiation between saturated and non-saturated zones. Velocity analyses of GPR profiles enable estimation of moisture distribution in the vicinity of the mounds. Optimal delineation and production of high-resolution GPR data up to a depth of ~ 10 m were observed for a sounding frequency of ~ 250 MHz with moisture content of ~ 5% by weight. Below this moisture level, the dielectric contrast is insufficient to uniquely identify water-saturated zones from the surrounding geoelectrical context, and above it, the radar signal is substantially attenuated leading to a total inefficiency of the method.  相似文献   
216.
Phytoremediation is a proven low-cost and sustainable method for the removal of toxic pollutants from water. This green technology has been practiced for the past several years all over the world. In the present study, the interaction of fluoride on the surface of the floating aquatic plant water lettuce (Pistia stratiotes) during fluoride removal was investigated. Batch kinetic studies were performed to examine the fluoride uptake capacity of the plant with different initial fluoride concentrations such as 3, 5, 10, and 20 mg/L. The effects of various process parameters on fluoride uptake dynamics such as pH, plant biomass, initial fluoride concentration, and time were examined. Freundlich’s isotherm model was found to (R 2 = 0.957) fit well to the experimental data. The nature of reaction order followed pseudo-first-order kinetics, when the initial fluoride level in the solution was 5 mg/L. The experimental findings showed that the removal mechanism was driven by biosorption phenomenon. High fluoride concentration in the solution reduced the growth ratio of P. stratiotes. The lowest growth ratio of this aquatic macrophyte was found to be 76.80 ± 3.73% at 20 mg/L fluoride concentration. At lower fluoride concentrations such as 3 and 5 mg/L, the growth ratio of the plant was not reduced significantly.  相似文献   
217.
Human activities have exerted small to large scale changes on the hydrological cycle. The current scenario regarding groundwater resources suggests that globally there is a water crisis in terms of quantity (availability) and quality. Therefore there is a great need for the assessment and monitoring of quality and quantity of groundwater resources at local level. This paper presents a case study of the lower Shiwalik hills, in Rupnagar, Punjab, India, to trace land-use and land-cover changes during the past 17 years, with an emphasis on groundwater quality and quantity. This study was performed in alluvial and hilly terrain. The results show that the quantity of groundwater increased with the help of natural and artificial recharge due to change in land-use and land-cover pattern (increased area of fallow land). The quality of groundwater deteriorated due to input of fertilizers for enhancing the short-term soil fertility. Using a Remote Sensing and GIS based approach, we show the final results in map form. In particular we highlight a potential groundwater exploration site, which could be useful for district level planning. Our research shows that the change in land-use and land-cover affects the quantity and quality of groundwater.  相似文献   
218.
We use Bayesian model selection tools to forecast the Planck satellite's ability to distinguish between different models for the re-ionization history of the Universe, using the large angular scale signal in the cosmic microwave background polarization spectrum. We find that Planck is not expected to be able to distinguish between an instantaneous re-ionization model and a two-parameter smooth re-ionization model, except for extreme values of the additional re-ionization parameter. If it cannot, then it will be unable to distinguish between different two-parameter models either. However, Bayesian model averaging will be needed to obtain unbiased estimates of the optical depth to re-ionization. We also generalize our results to a hypothetical future cosmic variance limited microwave anisotropy survey, where the outlook is more optimistic.  相似文献   
219.
220.
The dynamics of methane (CH4) flux in relation to populations of methanogenic and methanotrophic bacteria was studied under the different biophysical conditions of the Indian Sundarban mangrove ecosystem. Soil depth profile analysis (up to 60 cm) in the lower littoral zone (LLZ) revealed that a methanogenic population of 6.45 ± 0.19 × 104 cells/g dry weight (dry wt) of soil accounted for a CH4 production rate of 6.23 ± 3.53 × 103 µmol m?2 day?1, whereas in the surface soil, a methanogenic population of 3.34 ± 0.37 × 10cells/g dry wt of soil accounted for a CH4 production rate of 31.6 ± 0.57 µmol m?2 day?1. The CH4 oxidation rate at 60 cm depth in the LLZ was 24.42 ± 1.28 µmol m?2 day?1, with an average methanotrophic population of 1.33 ± 0.43 × 104 cells/g dry wt of soil, whereas in the surface soil, the oxidation rate and average population were 3.38 ± 1.43 × 10µmol m?2 day?1 and 12.80 ± 2.54 × 10cells/g dry wt of soil, respectively. A similar soil profile in terms of CH4 dynamics and the populations of methanogenic and methanotrophic bacteria was found in the mid‐littoral and upper littoral zones of the studied area. The results demonstrate that most of the produced CH4 (approximately 60%) was oxidized by methanotrophic bacteria present in the soil, thus revealing their principal role in regulating the CH4 flux from this unique ecosystem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号