首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
地球物理   12篇
地质学   9篇
海洋学   2篇
  2020年   1篇
  2018年   3篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2003年   1篇
  1998年   1篇
排序方式: 共有23条查询结果,搜索用时 62 毫秒
21.
The aim of the study was to evaluate the impact of environmental contaminants on oxidative stress, genotoxic and histopathologic biomarkers in liver of mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) collected from a polluted coastal lagoon (Bizerte Lagoon) in comparison to a reference site (the Mediterranean Sea). Antioxidant enzyme activities were lower in fish from the polluted site compared with fish from the reference site, suggesting deficiency of the antioxidant system to compensate for oxidative stress. DNA damage was higher in both fish species from the contaminated site indicating genotoxic effects. The liver histopathological analysis revealed alterations in fish from Bizerte Lagoon. Hepatocytes from both fish species featured extensive lipid-type vacuolation and membrane disruption. Results suggest that the selected biomarkers in both fish species are useful for the assessment of pollution impacts in coastal environments influenced by multiple pollution sources.  相似文献   
22.
We present the results of a new genera tion of probabilistic seismic hazard assessment for Switzerland. This study replaces the previous intensity-based generation of national hazard maps of 1978. Based on a revised moment-magnitude earthquake catalog for Switzerland and the surrounding regions, covering the period 1300–2003, sets of recurrence parameters (a and b values, M max ) are estimated. Information on active faulting in Switzerland is too sparse to be used as source model. We develop instead two models of areal sources. The first oriented towards capturing historical and instrumental seismicity, the second guided largely by tectonic principles and express ing the alterative view that seismicity is less stationary and thus future activity may occur in previously quiet regions. To estimate three alterna tive a and b value sets and their relative weighting, we introduce a novel approach based on the modified Akaike information criterion, which allows us to decide when the data in a zone deserves to be fitted with a zone-specific b value. From these input parameters, we simulate synthetic earthquake catalogs of one-million-year duration down to magnitude 4.0, which also reflect the difference in depth distribution between the Alpine Foreland and the Alps. Using a specific predictive spectral ground motion model for Switzerland, we estimate expected ground motions in units of the 5% damped acceleration response spectrum at frequencies of 0.5–10 Hz for all of Switzerland, referenced to rock sites with an estimated shear wave velocity of 1,500 m/s2 in the upper 30 m. The highest hazard is found in the Wallis, in the Basel region, in Graubünden and along the Alpine front, with maximum spectral accelerations at 5 Hz frequency reaching 150 cm/s2 for a return period of 475 years and 720 cm/s2 for 10,000 years. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   
23.
In this work, we developed a mean projection for climate change and assessed its impact on some hydro-meteorological indicators relevant to climatic condition, precipitation extremes magnitude and frequency for the Siliana catchment in Tunisia based on an ensemble of seven combinations of global circulation models (GCMs) and regional climate models (RCMs) derived from the EU-FP6 ENSEMBLES project. We performed quantile-based mapping (QM) bias correction technique of climate model projection using local observations. Because there is no warranty that the best climate model based on its performances in reproducing historic climate will be superior to other models in simulating future climate, we used the multi-model ensemble (MME) mean approach to derive a mean projection as the best guess for climate change projection for the Siliana catchment. We also quantified the uncertainty of the MME in the projected change in the selected indicators by comparing their values in the reference period (1981–2010) to these in the future period (2041–2070). Results reveal that the Siliana catchment will be prone to drier and warmer climate in the future with less rainy days for each month. The uncertainty associated with the MME projection suggests that no clear general tendency for extreme rainy days in the future is expected. These findings highlight the need to consider an ensemble of multi-climate models with an uncertainty framework if reliable climate change impact study is sought at the catchment scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号