首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   864篇
  免费   45篇
  国内免费   14篇
测绘学   45篇
大气科学   123篇
地球物理   210篇
地质学   309篇
海洋学   69篇
天文学   100篇
综合类   2篇
自然地理   65篇
  2023年   4篇
  2022年   8篇
  2021年   27篇
  2020年   41篇
  2019年   21篇
  2018年   34篇
  2017年   28篇
  2016年   48篇
  2015年   34篇
  2014年   45篇
  2013年   45篇
  2012年   45篇
  2011年   80篇
  2010年   51篇
  2009年   53篇
  2008年   56篇
  2007年   30篇
  2006年   30篇
  2005年   20篇
  2004年   23篇
  2003年   23篇
  2002年   10篇
  2001年   14篇
  2000年   14篇
  1999年   9篇
  1998年   9篇
  1997年   6篇
  1995年   8篇
  1994年   6篇
  1993年   7篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   11篇
  1983年   2篇
  1982年   4篇
  1981年   6篇
  1980年   6篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   5篇
  1974年   7篇
  1973年   4篇
  1972年   3篇
排序方式: 共有923条查询结果,搜索用时 15 毫秒
71.
An integral concept of ecological research is the constraint of biodiversity along latitudinal and environmental gradients. The Red Sea features a natural example of a latitudinal gradient of salinity, temperature and nutrient richness. Coral reefs along the Red Sea coasts are supported with allochthonous resources such as oceanic and neritic phytoplankton and zooplankton; however, relatively little is known about how the ecohydrography correlates with plankton biodiversity and abundance. In this article we present the biodiversity of phytoplankton and zooplankton in Red Sea coral reefs. Oceanographic data (temperature, salinity), water samples for nutrient analysis, particulate organic matter, phytoplankton and zooplankton, the latter with special reference to Copepoda (Crustacea), were collected at nine coral reefs over ~1500 km distance along the Red Sea coast of Saudi Arabia. The trophic state of ambient waters [as indicated by chlorophyll a (Chl a)] changed from strong oligotrophy in the north to mesotrophy in the south and was associated with increasing biomasses of Bacillariophyceae, picoeukaryotes and Synechococcus as indicated by pigment fingerprinting (CHEMTAX) and flow cytometry. Net‐phytoplankton microscopy revealed a Trichodesmium erythraeum (Cyanobacteria) bloom north of the Farasan Islands. Several potentially harmful algae, including Dinophysis miles and Gonyaulax spinifera (Dinophyceae), were encountered in larger numbers in the vicinity of the aquaculture facilities at Al Lith. Changes in zooplankton abundance were mainly correlated to the phytoplankton biomass following the latitudinal gradient. The largest zooplankton abundance was observed at the Farasan Archipelago, despite high abundances of copepodites, veligers (Gastropoda larvae) and Chaetognatha at Al Lith. Although the community composition changed over latitude, biodiversity indices of phytoplankton and zooplankton did not exhibit a systematic pattern. As this study constitutes the first current account of the plankton biodiversity in Red Sea coral reefs at a large spatial scale, the results will be informative for ecosystem‐based management along the coastline of Saudi Arabia.  相似文献   
72.
This study presents the results of the 2013 Ibiza (Western Mediterranean) calibration campaign of Jason-2 and SARAL altimeters. It took place from 14 to 16 September 2013 and comprised two phases: the calibration of the GNSS (Global Navigation Satellite System) buoys to estimate the antenna height of each of them and the absolute calibration to estimate the altimeter bias (i.e., the difference of sea level measured by radar altimetry and GNSS). The first one was achieved in the Ibiza harbor at a close vicinity of the Ibiza tide gauge and the second one was performed at ~ 40 km at the northwest of Ibiza Island at a crossover point of Jason-2 and SARAL nominal groundtracks. Five buoys were used to delineate the crossover region and their measurements interpolated at the exact location of each overflight. The overflights occurred two consecutive days: 15 and 16 September 2013 for Jason-2 and SARAL, respectively. The GNSS data were processed using precise point positioning technique. The biases found are of (?0.1 ± 0.9) and (?3.1 ± 1.5) cm for Jason-2 and SARAL, respectively.  相似文献   
73.
Past and future sea-level rise along the coast of North Carolina,USA   总被引:1,自引:1,他引:0  
We evaluate relative sea level (RSL) trajectories for North Carolina, USA, in the context of tide-gauge measurements and geological sea-level reconstructions spanning the last ~11,000 years. RSL rise was fastest (~7 mm/yr) during the early Holocene and slowed over time with the end of the deglaciation. During the pre-Industrial Common Era (i.e., 0–1800 CE), RSL rise (~0.7 to 1.1 mm/yr) was driven primarily by glacio-isostatic adjustment, though dampened by tectonic uplift along the Cape Fear Arch. Ocean/atmosphere dynamics caused centennial variability of up to ~0.6 mm/yr around the long-term rate. It is extremely likely (probability P=0.95) that 20th century RSL rise at Sand Point, NC, (2.8 ± 0.5 mm/yr) was faster than during any other century in at least 2,900 years. Projections based on a fusion of process models, statistical models, expert elicitation, and expert assessment indicate that RSL at Wilmington, NC, is very likely (P=0.90) to rise by 42–132 cm between 2000 and 2100 under the high-emissions RCP 8.5 pathway. Under all emission pathways, 21st century RSL rise is very likely (P>0.90) to be faster than during the 20th century. Due to RSL rise, under RCP 8.5, the current ‘1-in-100 year’ flood is expected at Wilmington in ~30 of the 50 years between 2050-2100.  相似文献   
74.
The role of sulfur in two hydrothermal vent systems, the Logatchev hydrothermal field at 14°45′N/44°58′W and several different vent sites along the southern Mid-Atlantic Ridge (SMAR) between 4°48′S and 9°33′S and between 12°22′W and 13°12′W, is examined by utilizing multiple sulfur isotope and sulfur concentration data. Isotope compositions for sulfide minerals and vent H2S from different SMAR sites range from + 1.5 to + 8.9‰ in δ34S and from + 0.001 to + 0.051‰ in Δ33S. These data indicate mixing of mantle sulfur with sulfur from seawater sulfate. Combined δ34S and Δ33S systematics reveal that vent sulfide from SMAR is characterized by a sulfur contribution from seawater sulfate between 25 and 33%. This higher contribution, compared with EPR sulfide, indicates increased seawater sulfate reduction at MAR, because of a deeper seated magma chamber and longer fluid upflow path length, and points to fundamental differences with respect to subsurface structures and fluid evolution at slow and fast spreading mid-ocean ridges.Additionally, isotope data uncover non-equilibrium isotopic exchange between dissolved sulfide and sulfate in an anhydrite bearing zone below the vent systems at fluid temperatures between 335 and 400 °C. δ34S values between + 0.2 to + 8.8‰ for dissolved and precipitated sulfide from Logatchev point to the same mixing process between mantle sulfur and sulfur from seawater sulfate as at SMAR. δ34S values between ? 24.5 and + 6.5‰ and Δ33S values between + 0.001 and + 0.125‰ for sulfide-bearing sediments and mafic/ultramafic host rocks from drill cores taken in the region of Logatchev indicate a clear contribution of biogenic sulfides formed via bacterial sulfate reduction. Basalts and basaltic glass from SMAR sites with Δ33S = ? 0.008‰ reveal lower Δ33S lower values than suggested on the basis of previously published isotopic measurements of terrestrial materials.We conclude that the combined use of both δ34S and Δ33S provides a more detailed picture of the sulfur cycling in hydrothermal systems at the Mid-Atlantic Ridge and uncovers systematic differences to hydrothermal sites at different mid-ocean ridge sites. Multiple sulfur isotope measurements allow identification of incomplete isotope exchange in addition to isotope mixing as a second important factor influencing the isotopic composition of dissolved sulfide during fluid upflow. Furthermore, based on Δ33S we are able to clearly distinguish biogenic from hydrothermal sulfides in sediments even when δ34S were identical.  相似文献   
75.
Submarine channel levees aggrade through repeated overspill events from the channel axis. The shape of the levees may therefore reflect some characteristic(s) of the overspilling flow. It has been noted that basin floor levees typically have a relatively low-relief and taper exponentially to their termination; in contrast slope channel levees may be much steeper close to the channel. A simple physical experiment was performed where a surge-like sediment-laden current flowed through a curved channel. Significant overspill occurred and generated a deposit flanking the channel on either side. The experiment was repeated 25 times to build up low-relief channel-levees. It was found that in proximal areas, levees were steep and characterised by power-law decays, a transitional zone of logarithmically thinning levee was found a little further down-channel, followed by exponential decays in medial to distal areas. The style of levee decay is a function of spatial variation in overbank sedimentation rates. Where flows rapidly lose momentum and deposit across the grain-size spectrum, i.e., in proximal areas, levees tend to be steep; farther down the channel, the steep levee slope gives way to a more gradually tapering deposit. In more distal parts of the channel, deposition is directly related to sediment settling velocity (rather than the suspended load exceeding flow transport capacity as is the case in proximal areas), the deposit reflects this with relatively simple exponential thickness decays. Additionally, small-scale sediment waves developed under lee wave conditions on the inner-bend overbank. The waves initially migrated slightly towards the channel, but as the style of overspill evolved due to intra-channel deposition, flows moved out of the lee wave window and sedimentation became out of phase with the wavelength of the features and the topography was healed.  相似文献   
76.
Neoproterozoic chemostratigraphy   总被引:3,自引:0,他引:3  
Chemostratigraphy has diverse applications to investigating the rock record, such as reconstructing paleoenvironments, determining the tectonic setting of sedimentary basins, indirect dating, and establishing regional or global correlations. Chemostratigraphy is thus an integral component of many investigations of the ancient sedimentary record. In this contribution, we review the principle inorganic geochemical methods that have been applied to the Neoproterozoic sedimentary record. Analysis of the traditional stable and radiogenic isotope systems, such as δ13C, δ18O, δ34S, and 87Sr/86Sr, is routine, particularly in successions rich in carbonate. These mainstay applications have yielded invaluable data and information bearing on the chronology and evolution of this eventful era in Earth history. Alongside the growing database of traditional data, a series of novel geochemical techniques have given rise to important new models and constraints on Neoproterozoic biogeochemical change. In particular, a range of proxies for water column redox, mainly obtained from black shales, have shed light on the pace and tempo of Neoproterozoic oxygenation and its link to the appearance of early animal evolution. Increased integration of diverse geochemical, sedimentological, and paleontological datasets, and the gradual radiometric calibration of the stratigraphic record promise to bring the details of the evolution of the Neoproterozoic Earth system into ever greater focus.  相似文献   
77.
Hydrologically driven mass wasting in the form of landslides on steep slopes is a worldwide occurrence. High-profile events in, for example, Brazil, Chile, the Philippines, Puerto Rico, and Venezuela during the last three decades all clearly illustrate, based upon significant losses of life and property, that hydrologically driven slope instability in developed (urban) areas can be a major geologic/environmental hazard. The focus of this study is the 1973 hydrologically driven Lerida Court landslide in Portola Valley, CA, USA. Physics-based hydrologic-response simulation, with the comprehensive Integrated Hydrology Model, was employed to forensically estimate the spatiotemporal pore pressure distributions for the Lerida Court site. Slope stability, driven by the simulated pore pressure dynamics, was estimated for the Lerida Court site with the infinite slope/Factor of Safety approach. The pore pressure dynamics for the Lerida Court site were reasonably captured by the hydrologic-response simulation. The estimated time of slope failure for the Lerida Court site compares well with field observations. A recommendation is made that hydrologically driven slope stability estimates including variably saturated subsurface flow be standard protocol for development sites in steep urban settings.  相似文献   
78.
To better understand volcanism on planetary bodies other than the Earth, the quantification of physical processes is needed. Here, the petrogenesis of the achondrite Martian Yamato (Y) nakhlites (Y 000593, Y 000749, and Y 000802) is reinvestigated via quantitative analysis of augite (high-Ca clinopyroxene) phenocrysts: crystal size distribution (CSD), spatial distribution patterns (SDP), and electron backscatter diffraction (EBSD). Results from CSD and EBSD quantitative data sets show augite to have continuous uninterrupted growth resulting in calculated minimum magma chamber residence times of either 88–117 ± 6 yr or 9–12 yr. All samples exhibit low-intensity S-LS type crystallographic preferred orientation. Directional strain is observed across all samples with intracrystalline misorientation patterns indicative of (100)[001]:(001)[100] (Y 000593 and Y 000802) and {110}<001>or {110}1/2<110> (Y 000749) slip systems. SDP results indicate phenocryst-bearing crystal-clustered rock signatures. Combined findings from this work show that the Yamato nakhlites formed on Mars as individual low-viscosity lava flows or sills. This study shows that through combining these different quantitative techniques over multiple samples, one can more effectively compare and interpret resulting data to gain a more robust, geologically contextualized petrogenetic understanding of the rock suite being studied. The techniques used in this study should be equally applicable to igneous achondrites from other parent bodies.  相似文献   
79.
Agricultural intensification in South Asia has resulted in the expansion and intensification of surface irrigation over the twentieth century. The resulting changes to the surface energy balance could affect the temperature contrasts between the South Asian land surface and the equatorial Indian Ocean, potentially altering the South Asian Summer Monsoon (SASM) circulation. Prior studies have noted apparent declines in the monsoon intensity over the twentieth century and have focused on how altered surface energy balances impact the SASM rainfall distribution. Here, we use the coupled Goddard Institute for Space Studies ModelE-R general circulation model to investigate the impact of intensifying irrigation on the large-scale SASM circulation over the twentieth century, including how the effect of irrigation compares to the impact of increasing greenhouse gas (GHG) forcing. We force our simulations with time-varying, historical estimates of irrigation, both alone and with twentieth century GHGs and other forcings. In the irrigation only experiment, irrigation rates correlate strongly with lower and upper level temperature contrasts between the Indian sub-continent and the Indian Ocean (Pearson’s r = ?0.66 and r = ?0.46, respectively), important quantities that control the strength of the SASM circulation. When GHG forcing is included, these correlations strengthen: r = ?0.72 and r = ?0.47 for lower and upper level temperature contrasts, respectively. Under irrigated conditions, the mean SASM intensity in the model decreases only slightly and insignificantly. However, in the simulation with irrigation and GHG forcing, inter-annual variability of the SASM circulation decreases by ~40 %, consistent with trends in the reanalysis products. This suggests that the inclusion of irrigation may be necessary to accurately simulate the historical trends and variability of the SASM system over the last 50 years. These findings suggest that intensifying irrigation, in concert with increased GHG forcing, is capable of reducing the variability of the simulated SASM circulation and altering the regional moisture transport by limiting the surface warming and reducing land–sea temperature gradients.  相似文献   
80.
The capability of a current state-of-the-art regional climate model for simulating the diurnal and annual cycles of rainfall over a complex subtropical region is documented here. Hourly rainfall is simulated over Southern Africa for 1998–2006 by the non-hydrostatic model weather research and forecasting (WRF), and compared to a network of 103 stations covering South Africa. We used five simulations, four of which consist of different parameterizations for atmospheric convection at a 0.5 × 0.5° resolution, performed to test the physic-dependency of the results. The fifth experiment uses explicit convection over tropical South Africa at a 1/30° resolution. WRF simulates realistic mean rainfall fields, albeit wet biases over tropical Africa. The model mean biases are strongly modulated by the convective scheme used for the simulations. The annual cycle of rainfall is well simulated over South Africa, mostly influenced by tropical summer rainfall except in the Western Cape region experiencing winter rainfall. The diurnal cycle shows a timing bias, with atmospheric convection occurring too early in the afternoon, and causing too abundant rainfall. This result, particularly true in summer over the northeastern part of the country, is weakly physic-dependent. Cloud-resolving simulations do not clearly reduce the diurnal cycle biases. In the end, the rainfall overestimations appear to be mostly imputable to the afternoon hours of the austral summer rainy season, i.e., the periods during which convective activity is intense over the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号