首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   9篇
  国内免费   1篇
测绘学   3篇
大气科学   23篇
地球物理   55篇
地质学   105篇
海洋学   37篇
天文学   66篇
自然地理   30篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   4篇
  2015年   6篇
  2014年   3篇
  2013年   15篇
  2011年   14篇
  2010年   9篇
  2009年   20篇
  2008年   14篇
  2007年   16篇
  2006年   22篇
  2005年   13篇
  2004年   5篇
  2003年   5篇
  2002年   7篇
  2001年   5篇
  2000年   11篇
  1999年   5篇
  1998年   10篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   6篇
  1990年   2篇
  1989年   4篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   7篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1978年   14篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
  1967年   3篇
  1948年   2篇
排序方式: 共有319条查询结果,搜索用时 31 毫秒
211.
212.
Radio occultation observations of Saturn's rings with Voyager 1 provided independent measurements of complex (amplitude and phase) microwave extinction and near-forward scattering cross section of the rings at wavelengths (λ) of 3.6 and 13 cm. The ring opening was 5.9°. The normal microwave opacities, τ[3.6] and τ[13], provide a measure of the total cross-sectional area of particles larger than about 1 and 4 cm radius, respectively. Ring C exhibits gently undulating (~ 1000 km) structure of normal opacity τ[3.6] ? 0.25 except for several narrow imbedded ringlets of less than about 100 km width and τ[3.6] ~ 0.5 to 1.0. The normalized differential opacity Δτ/τ[3.6], where Δτ = τ[3.6] ? τ[13], is about 0.3 over most of ring C, indicating a substantial fraction of centimeter-size particles. Some narrow imbedded ringlets show marked increases in Δτ/τ[3.6] near their edges, implying an enhancement in the relative population of centimeter-size and smaller particles at those locations. In the Cassini division, several sharply defined gaps separate regions of opacity τ ~ 0.08 and τ ~ 0.25; the opacity in the Cassini Division appears to be nearly independent of λ. The boundary features at the outer edges of ring C and the Cassini Division are remarkably similar in width and opacity profile, suggesting a similar dynamical control. Ring A appears to be nearly homogeneous over much of its width with 0.6 < τ[3.6] < 0.8 but with considerable thickening, to τ[3.6] ~ 1.0, near its inner boundary with the Cassini division. Normalized differential opacity decreases from ~0.3 at the inner and outer edges of ring A to Δτ/τ[3.6] ~ 0 at a point about one-third of the distance from the inner edge to the outer. The inner one-fourth of ring B has τ[3.6] ~ 1.0, except very near the boundary with ring C, where it is greater. The outer three-fourths of ring B has τ[3.6] ? 1.2. The differential opacity for the inner one-fourth of ring B is Δτ/τ[3.6] ~ 0.15. There are no gaps in ring B exceeding about 2 km in width. Ring F was observed at 3.6 cm as a single ringlet of radial width ? 2 km, but was not detected in 13 cm data.  相似文献   
213.
214.
215.
Porphyry Cu-Mo-Au mineralisation with associated potassic and phyllic alteration, an advanced argillic alteration cap and epithermal quartz-sulphide-gold-anhydrite veins, are telescoped within a vertical interval of 400-800 m on the northeastern margin of the Thames district, New Zealand. The geological setting is Jurassic greywacke basement overlain by Late Miocene andesitic-dacitic rocks that are extensively altered to propylitic and argillic assemblages. The porphyry Cu-Mo-Au mineralisation is hosted in a dacite porphyry stock and surrounding intrusion breccia. Relicts of a core zone of potassic K-feldspar-magnetite-biotite alteration are overprinted by phyllic quartz-sericite-pyrite or intermediate argillic chlorite-sericite alteration assemblages. Some copper occurs in quartz-magnetite-chlorite-pyrite-chalcopyrite veinlets in the core zone, but the bulk of the copper and the molybdenum are associated with the phyllic alteration as disseminated chalcopyrite and as molybdenite-sericite-carbonate veinlets. The advanced argillic cap has a quartz-alunite-dickite core, which is enveloped by an extensive pyrophyllite-diaspore-dickite-kaolinite assemblage that overlaps with the upper part of the phyllic alteration zone. Later quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite-carbonate veins occur within and around the margins of the porphyry intrusion, and are associated with widespread illite-carbonate (argillic) alteration. Multiphase fluid inclusions in quartz stockwork veins associated with the potassic alteration trapped a highly saline (50-84 wt% NaCl equiv.) magmatic fluid at high temperatures (450 to >600 °C). These hypersaline brines were probably trapped at a pressure of about 300 bar, corresponding to a depth of 1.2 km under lithostatic conditions. This shallow depth is consistent with textures of the host dacite porphyry and reconstruction of the volcanic stratigraphy. Liquid-rich fluid inclusions in the quartz stockwork veins and quartz phenocrysts trapped a lower salinity (3-20 wt% NaCl equiv.), moderate temperature (300-400 °C) fluid that may have caused the phyllic alteration. Fluid inclusions in the quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite-carbonate veins trapped dilute (1-3 wt% NaCl equiv.) fluids at 250 to 320 °C, at a minimum depth of 1.0 km under hydrostatic conditions. Oxygen isotopic compositions of the fluids that deposited the quartz stockwork veins fall within the 6 to 10‰ range of magmatic waters, whereas the quartz-sulphide-gold-anhydrite veins have lower '18Owater values (-0.6 to 0.5‰), reflecting a local meteoric water (-6‰) influence. A '18O versus 'D plot shows a trend from magmatic water in the quartz stockwork veins to a near meteoric water composition in kaolinite from the advanced argillic alteration. Data points for pyrophyllite and the quartz-sulphide-gold-anhydrite veins lie about midway between the magmatic and meteoric water end-member compositions. The spatial association between porphyry Cu-Mo-Au mineralisation, advanced argillic alteration and quartz-sulphide-gold-anhydrite veins suggests that they are all genetically part of the same hydrothermal system. This is consistent with K-Ar dates of 11.6-10.7 Ma for the intrusive porphyry, for alunite in the advanced argillic alteration, and for sericite selvages from quartz-gold veins in the Thames district.  相似文献   
216.
Determining the net exchange of constituents between a mangrove estuary system and the adjacent ocean has been re-examined using an extensive dataset from the Sungai Merbok a short, tidally energetic estuary in Malaysia. Previous analysis of the data had indicated that the time-mean sectionally averaged flow was not consistent with mass balance, apparently preventing meaningful estimation of net nutrient fluxes from the mangrove system. In this case the problem was aggravated by the lack of river gauge data and uncertainties introduced by the use of deflected-vane current meters to make the flow measurements. In an alternative approach to the analysis, we have sought to put bounds on the net discharge and hence obtain limits for the nutrient output from the estuary. Tide gauge measurements have been used in conjunction with the section flow data to determine the hypsometry of the mangrove system and hence yield an unbiased estimate of tidal transport Qt. A salt balance condition, appropriate to a mixed estuary is then applied to permit an estimate of Qf, the freshwater discharge. Qf determined this way is found to be close to zero and certainly less than estimates for the period (mean ≈7 m3 s?1) based on rainfall records and catchment area. The implication is that the combined effects of evaporation and transpiration are removing a large proportion of the fresh water entering the mangrove system from the rivers. The very low net discharge indicates total nitrogen exchange is dominated by the covariance of Qt with the sectionally averaged concentration Nt. The considerable variation in this latter term combined with the large amplitude of Qt results in a high variability of the nitrate flux so that the estimate of the mean (0.5 g s?1) is subject to substantial sampling uncertainty (SE=12 g s?1). The application of the salt balance condition to flux studies in other estuarine systems is considered. Particular attention is drawn to the requirements of this approach to flux determination and especially the need for good timing control to allow the proper determination of the tidal diffusion flux of salt and other components.  相似文献   
217.
218.
Sediments recovered from 0 to 27 + meters below the seafloor (mbsf) of a gas-hydrate and gas-venting active area in the Gulf of Mexico were added to a hydrate growth test cell to determine the influence of the organic and inorganic sedimentary components on hydrate induction times and formation rates. Induction times were sixteen times shorter in the presence of sediment from approximately 18 mbsf (relative to sediment from 1 mbsf), and remained stable in the presence of sediment from 18 to 27 mbsf. Formation rates increased by a factor of 2.5 in the presence of sediments from approximately 18 mbsf and decreased somewhat in the presence of sediment from 18 to 27 mbsf. Selected samples (surface, 18 and 27 mbsf) were density fractionated and subjected to bulk elemental and X-ray photoelectron spectroscopy (XPS) analysis. XPS revealed the presence of iron in various chemical environments at depths of 18 and 27 mbsf. High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) was used to characterize the organic component of sediments from selected depths. The discovery of intact proteinaceous material in the surface sediment was surprising due to the labile nature of these biopolymers, and potentially reflects microbial activity in these surface layers. This material was less abundant in sediment from increasing depths, where more lipid-like compounds were prominent. The results suggest that hydrate growth is inhibited by the presence of proteinaceous material but enhanced by lipid-like compounds associated with iron-bearing mineral surfaces.  相似文献   
219.
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号