首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2924篇
  免费   101篇
  国内免费   57篇
测绘学   70篇
大气科学   222篇
地球物理   586篇
地质学   1037篇
海洋学   243篇
天文学   706篇
综合类   14篇
自然地理   204篇
  2022年   13篇
  2021年   48篇
  2020年   50篇
  2019年   56篇
  2018年   63篇
  2017年   64篇
  2016年   88篇
  2015年   73篇
  2014年   74篇
  2013年   154篇
  2012年   96篇
  2011年   132篇
  2010年   125篇
  2009年   165篇
  2008年   142篇
  2007年   160篇
  2006年   149篇
  2005年   94篇
  2004年   116篇
  2003年   89篇
  2002年   101篇
  2001年   98篇
  2000年   87篇
  1999年   63篇
  1998年   70篇
  1997年   46篇
  1996年   34篇
  1995年   50篇
  1994年   32篇
  1993年   19篇
  1992年   32篇
  1991年   16篇
  1990年   24篇
  1989年   29篇
  1988年   23篇
  1987年   35篇
  1986年   25篇
  1985年   15篇
  1984年   29篇
  1983年   24篇
  1982年   22篇
  1981年   31篇
  1980年   19篇
  1979年   31篇
  1978年   25篇
  1977年   24篇
  1976年   14篇
  1975年   16篇
  1974年   13篇
  1973年   12篇
排序方式: 共有3082条查询结果,搜索用时 15 毫秒
181.
The brightness temperatures of the Microwave sensor MSMR (Multichannel Scanning Microwave Radiometer) launched in May 1999 onboard Indian Oceansat-1 IRS-P4 are used to develop a direct retrieval method for latent heat flux by multivariate regression technique. The MSMR measures the microwave radiances at 8 channels at frequencies of 6.6, 10.7, 18 and 21 GHz at both vertical and horizontal polarizations. It is found that the surface LHF (Latent Heat Flux) is sensitive to all the channels. The coefficients were derived using the National Centre for Environmental Prediction (NCEP) reanalysis data of three months: July, September, November of 1999. The NCEP daily analyzed latent heat fluxes and brightness temperatures observed by MSMR were used to derive the coefficients. Validity of the derived coefficients was checked within situ observations over the Indian Ocean and with NCEP analyzed LHF for global points. The LHF derived directly from the MSMR brightness temperature (Tb) yielded an accuracy of 35 watt/m2. LHF was also computed by applying bulk formula using the geophysical parameters extracted from MSMR. In this case the errors were higher apparently due to the errors involved in derivation of the geophysical parameters.  相似文献   
182.
183.
Here we present the first proof of an impact origin for the Saqqar circular structure in northwestern Saudi Arabia (Neville et al. 2014 ), with an apparent diameter of 34 km, centered at 29°35′N, 38°42′E. The structure is formed in Cambrian–Devonian siliciclastics and is unconformably overlain by undeformed Cretaceous and Paleogene sediments. The age of impact is not well constrained and lies somewhere between 410 and 70 Ma. The subsurface structure is constrained by 2‐D reflection seismic profiles and six drilled wells. First‐order structural features are a central uplift that rises approximately 2 km above regional datums, surrounded by a ring syncline. The crater rim is defined by circumferential normal faults. The central uplift and ring syncline correspond to a Bouguer gravity high and an annular ring‐like low, respectively. The wells were drilled within the central uplift, the deepest among them exceed 2 km depth. Sandstone core samples from these wells show abundant indicators of a shock metamorphic overprint. Planar deformation features (PDFs) were measured with orientations along (0001), {103}, and less frequently along {101} and {104}. Planar fractures (PFs) predominantly occur along (0001) and {101}, and are locally associated with feather features (FFs). In addition, some shocked feldspar grains and strongly deformed mica flakes were found. The recorded shock pressure ranges between 5 and 15 GPa. The preserved level of shock and the absence of an allochthonous crater fill suggest that Saqqar was eroded by 1–2 km between the Devonian and Maastrichtian. The documentation of unequivocal shock features proves the formation of the Saqqar structure by a hypervelocity impact event.  相似文献   
184.
A simulation framework based on Smoothed Particle Hydrodynamics (SPH) is introduced to model problems involving the interaction between flowing water and soil deformation. Changes in soil porosity and associated permeability are automatically adjusted within this framework. The framework’s capabilities are presented and discussed for three geotechnical problems caused by flowing water. The comparison between simulation results and experiments shows that SPH with the proposed concept is capable of quantitatively simulating the hydro-mechanical processes beyond limit state with satisfactory agreement. To improve the computational stability, a correction procedure and a new algorithm for the selection of the optimal time step are introduced.  相似文献   
185.
Solar irradiation fluxes are determined between 150 and 210 nm from stigmatic spectra of the Sun obtained by means of a rocket-borne spectrograph. Absolute intensities at the disk center with a spectral resolution of 0.04 nm and a spatial resolution of 7 arc sec are presented. From center-to-limb intensity variations determined from the same spectra, mean full disk intensities of the quiet Sun can be deduced. In order to compare them with other measurements, the new solar fluxes have been averaged over a bandpass of 1 nm.  相似文献   
186.
The particle size of the bed sediments in or on many natural streams, alluvial fans, laboratory flumes, irrigation canals and mine waste deltas varies exponentially with distance along the stream. A plot of the available worldwide exponential bed particle size diminution coefficient data against stream length is presented which shows that all the data lie within a single narrow band extending over virtually the whole range of stream lengths and bed sediment particle sizes found on Earth. This correlation applies to both natural and artificial flows with both sand and gravel beds, irrespective of either the solids concentration or whether normal or reverse sorting occurs. This strongly suggests that there are common mechanisms underlying the exponential diminution of bed particles in subaerial aqueous flows of all kinds. Thus existing models of sorting and abrasion applicable to some such flows may be applicable to others. A comparison of exponential laboratory abrasion and field diminution coefficients suggests that abrasion is unlikely to be significant in gravel and sand bed streams shorter than about 10 km to 100 km, and about 500 km, respectively. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
187.
The Cassini spacecraft encountered Jupiter in late 2000. Within more than 1 AU of the gas giant the Cosmic Dust Analyser onboard the spacecraft recorded the first ever mass spectra of jovian stream particles. To determine the chemical composition of particles, a comprehensive statistical analysis of the dataset was performed. Our results imply that the vast majority (>95%) of the observed stream particles originate from the volcanic active jovian satellite Io from where they are sprinkled out far into the Solar System. Sodium chloride (NaCl) was identified as the major particle constituent, accompanied by sulphurous as well as potassium bearing components. This is in contrast to observations of gas in the ionian atmosphere, its co-rotating plasma torus, and the neutral cloud, where sulphur species are dominant while alkali and chlorine species are only minor components. Io has the largest active volcanoes of the Solar System with plumes reaching heights of more than 400 km above the moons surface. Our in situ measurements indicate that alkaline salt condensation of volcanic gases inside those plumes could be the dominant formation process for particles reaching the ionian exosphere.  相似文献   
188.
The Reykjanes Peninsula in southwest Iceland is a highly oblique spreading segment of the Mid-Atlantic Ridge oriented about 30° from the direction of absolute plate motion. We present a complete and spatially accurate map of fractures for the Reykjanes Peninsula with a level of detail previously unattained. Our map reveals a variability in the pattern of normal, oblique- and strike-slip faults and open fractures which reflects both temporal and spatial strain partitioning within the plate boundary zone. Fracture density varies across the length and width of the peninsula, with density maxima at the ends and at the northern margin of the zone of volcanic activity. Fractures with similar strike cluster into distinct structural domains which can be related to patterns of faulting predicted for oblique extension and to their spatial distribution with respect to volcanic fissure swarms. Additional structural complexity on the Reykjanes Peninsula can be reconciled with magmatic periodicity and associated temporal strain partitioning implied by GPS data, as well as locally perturbed stress fields. Individual faults show variable slip histories, indicating that they may be active during both magmatic and amagmatic periods associated with different strain fields.  相似文献   
189.
Four sinkholes with varying surficial expressions were subjected to detailed stratigraphic and soil analysis by means of Standard Penetration Tests (SPT) and Electric Friction Cone Penetration Tests (CPT) in order to evaluate applications of CPT to sinkhole investigations. Although widely used, SPT data are of limited value and difficult to apply to sinkhole mapping. CPT is sensitive to minor lithologic variability and is superior to SPT as a cost-effective technique for determining geotechnical properties of sinkholes. The effectiveness of CPT data results from the force measurements made along the sleeve of the cone. The friction ratio (ratio of sleeve to tip resistance) is a good indicator of soil stratigraphy and properties. By smoothing the friction-ratio data, general stratigraphy and changes in soil properties are easily identified. Stratigraphy of the sinks has been complicated by intense weathering, karstification and marine, transgressions. The resulting deposits include five stratigraphic units. I and II represent Plio-Pleistocene marine sediments with Unit II being the zone of soil clay accumulation. III and IV are horizons residual from Miocene strata and indicate an episode of karstification prior to deposition of Units I and II. Conduit fill is a mixture of materials with low cohesion. The fill materials indicate centripetal and downward movement of insoluble sediments derived from the surrounding strata. Loss of cohesion results in near-zero friction ratios. Very low friction ratios, coupled with materials with little cohesion, indicate potentially-liquefiable soils in the immediate vicinity of zones where piping failure may be imminent. SPT does not provide sufficient data to predict these zones of potential, failure. CPT provides sufficient information for recognition of sinkhole stratigraphy and geotechnical properties. When coupled with laboratory soil analysis, CPT provides unique information about sinkhole geometry and dynamics. In contrast, SPT data fail to produce consistent indicators of sinkhole stratigraphy or properties. With laboratory soil data, SPT indicates general, inconclusive trends.  相似文献   
190.
Detailed electron microscope and microstructural analysis of two ultrahigh temperature felsic granulites from Tonagh Island, Napier Complex, Antarctica show deformation microstructures produced at  1000 °C at 8–10 kbar. High temperature orthopyroxene (Al 7 wt.% and  11 wt.%), exhibits crystallographic preferred orientation (CPO) and frequent subgrain boundaries which point to dislocation creep as the dominating deformation mechanism within opx. Two different main slip systems are observed: in opx bands with exclusively opx grains containing subgrain boundaries with traces parallel to [010] and a strong coupling of low angle misorientations (2.5°–5°) with rotation axes parallel to [010] the dominating slip system is (100)[001]. Isolated opx grains and grain clusters of 2–5 grains embedded in a qtz–fsp matrix show an additional slip system of (010)[001]. The latter slip system is harder to activate. We suggest that differences in the activation of these slip systems is a result of higher differential stresses imposed onto the isolated opx grains and grain clusters. In contrast to opx, large qtz grains (up to 200 μm) show random crystallographic orientation. This together with their elongate and cuspate shape and the lack of systematic in the rotation axes associated with the subgrain boundaries is consistent with diffusion creep as the primary deformation mechanism in quartz.Our first time detailed microstructural observations of ultrahigh temperature and medium to high pressure granulites and their interpretation in terms of active deformation mechanisms give some insight into the type of rheology that can be expect at lower crustal conditions. If qtz is the mineral phase governing the rock rheology, Newtonian flow behaviour is expected and only low differential stress can be supported. However, if the stress supporting mineral phase is opx, the flow law resulting from dislocation creep will govern the rheology of the rock unit; hence, an exponential relationship between stress and strain rate is to be expected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号