首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2274篇
  免费   92篇
  国内免费   42篇
测绘学   69篇
大气科学   146篇
地球物理   441篇
地质学   845篇
海洋学   172篇
天文学   529篇
综合类   10篇
自然地理   196篇
  2022年   10篇
  2021年   43篇
  2020年   43篇
  2019年   43篇
  2018年   53篇
  2017年   54篇
  2016年   64篇
  2015年   63篇
  2014年   63篇
  2013年   114篇
  2012年   82篇
  2011年   101篇
  2010年   105篇
  2009年   136篇
  2008年   111篇
  2007年   121篇
  2006年   114篇
  2005年   77篇
  2004年   104篇
  2003年   68篇
  2002年   69篇
  2001年   63篇
  2000年   57篇
  1999年   48篇
  1998年   55篇
  1997年   35篇
  1996年   23篇
  1995年   37篇
  1994年   25篇
  1993年   10篇
  1992年   28篇
  1991年   17篇
  1990年   14篇
  1989年   19篇
  1988年   13篇
  1987年   22篇
  1986年   17篇
  1985年   19篇
  1984年   20篇
  1983年   22篇
  1982年   18篇
  1981年   26篇
  1980年   18篇
  1979年   12篇
  1978年   17篇
  1977年   14篇
  1975年   17篇
  1974年   15篇
  1973年   15篇
  1971年   10篇
排序方式: 共有2408条查询结果,搜索用时 15 毫秒
51.
Hydrological connectivity is a term often used to describe the internal linkages between runoff and sediment generation in upper parts of catchments and the receiving waters. In this paper, we identify two types of connectivity: direct connectivity via new channels or gullies, and diffuse connectivity as surface runoff reaches the stream network via overland flow pathways. Using a forest road network as an example of a landscape element with a high runoff source strength, we demonstrate the spatial distribution of these two types of linkages in a 57 km2 catchment in southeastern Australia. Field surveys and empirical modelling indicate that direct connectivity occurs primarily due to gully development at road culverts, where the average sediment transport distance is 89 m below the road outlet. The majority of road outlets were characterised by dispersive flow pathways where the maximum potential sediment transport distance is measured as the available hillslope length below the road outlet. This length has a mean value of 120 m for this catchment. Reductions in sediment concentration in runoff plumes from both pathways are modelled using an exponential decay function and data derived from large rainfall simulator experiments in the catchment. The concept of the volume to breakthrough is used to model the potential delivery of runoff from dispersive pathways. Of the surveyed road drains (n=218), only 11 are predicted to deliver runoff to a stream and the greatest contributor of runoff occurs at a stream crossing where a road segment discharges directly into the stream. The methodology described here can be used to assess the spatial distribution and likely impact of dispersive and gullied pathways on in-stream water quality.  相似文献   
52.
We compare high-resolution pollen and chironomid records from the last 15,000 yr in Laguna Facil, southern Chile. Major vegetation and chironomid changes are recorded between ca 14,900 and 14,700 cal. yr BP. During the Lateglacial, changes in the chironomid stratigraphy lag behind changes in the pollen stratigraphy suggesting that the chironomids are responding to changes in the tree canopy or in soil chemistry brought about by vegetational development. At about 7200 cal. yr BP there is a change in the chironomid stratigraphy in advance of changes in the vegetation. This suggests that the response is to regional climatic change. The relatively close correlation of the chironomid and pollen stratigraphies with changes in charcoal concentrations also implicates the importance of fire and/or vulcanism in influencing the dynamics of forest and limnological systems. There is no clear evidence of cooling during the Younger Dryas chronozone in Laguna Facil.  相似文献   
53.
Isotope fractionation of electroplated Fe was measured as a function of applied electrochemical potential. As plating voltage was varied from −0.9 V to 2.0 V, the isotopic signature of the electroplated iron became depleted in heavy Fe, with δ56Fe values (relative to IRMM-14) ranging from −0.18(±0.02) to −2.290(±0.006) ‰, and corresponding δ57Fe values of −0.247(±0.014) and −3.354(±0.019) ‰. This study demonstrates that there is a voltage-dependent isotope fractionation associated with the reduction of iron. We show that Marcus’s theory for the kinetics of electron transfer can be extended to include the isotope effects of electron transfer, and that the extended theory accounts for the voltage dependence of Fe isotope fractionation. The magnitude of the electrochemically-induced fractionation is similar to that of Fe reduction by certain bacteria, suggesting that similar electrochemical processes may be responsible for biogeochemical Fe isotope effects. Charge transfer is a fundamental physicochemical process involving Fe as well as other transition metals with multiple isotopes. Partitioning of isotopes among elements with varying redox states holds promise as a tool in a wide range of the Earth and environmental sciences, biology, and industry.  相似文献   
54.
The fractionation of lithium isotopes among quartz, muscovite, and a chloride-bearing aqueous fluid has been investigated experimentally at 400°-500°C and 50-100 MPa. Experiments were performed for 15-60 days in cold seal vessels with natural mineral specimens. Lithium was introduced primarily through the fluid, which also contained KCl and HCl. In most runs, the fluid was prepared with the L-SVEC standard (δ7Li = 0) and was 1 M in total chloride with K/Li/H = 100/10/1. In two experiments, a 6Li spike was employed. The experiments demonstrate that quartz and muscovite are susceptible to pronounced, rapid shifts in Li isotopic composition by diffusion through interaction with a Li-bearing fluid, particularly at 500°C. At 500°C, fractionation factors were determined to be Δquartz-aqueous ≅ +8 to + 12‰ and Δmuscovite-aqueous ≅ +18 to + 20‰. An intermineral fractionation factor is given by Δmuscovite-quartz ≈ +9‰. At 400°C, the results suggest Δquartz-aqueous ≈ +4 to + 6‰. The study provides evidence of systematic fractionation in lithium isotopes at the temperatures of some magmatic processes, such as those associated with porphyry-type ore systems and pegmatites.  相似文献   
55.
Gold partitioning in melt-vapor-brine systems   总被引:5,自引:0,他引:5  
We used laser-ablation inductively coupled plasma mass spectrometry to measure the solubility of gold in synthetic sulfur-free vapor and brine fluid inclusions in a vapor + brine + haplogranite + magnetite + gold metal assemblage. Experiments were conducted at 800°C, oxygen fugacity buffered at Ni-NiO (NNO), and pressures ranging from 110 to 145 MPa. The wt% NaCl eq. of vapor increases from 2.3 to 19 and that of brine decreases from 57 to 35 with increasing pressure. The composition of the vapors and brines are dominated by NaCl + KCl + FeCl2 + H2O. Gold concentrations in vapor and brine decrease from 36 to 5 and 50 to 28 μg/g, respectively, and the calculated vapor:brine partition coefficients for gold decrease from 0.72 to 0.17 as pressure decreases from 145 to 110 MPa. These data are consistent with the thermodynamic boundary condition that the concentration of gold in the vapor and brine must approach a common value as the critical pressure is approached along the 800°C isotherm in the NaCl-KCl-FeCl2-HCl-H2O system.We use the equilibrium constant for gold dissolution as AuOH0, extrapolated from lower temperature and overlapping pressure range, to calculate expected concentrations of AuOH0 in our experimental vapors. These calculations suggest that a significant quantity of gold in our experimental vapors is present as a non-hydroxide species. Possible chloridogold(I) species are hypothesized based on the positively correlated gold and chloride concentrations in our experimental vapors. The absolute concentration of gold in our synthetic vapor, brine, and melt and calculated mass partition coefficients for gold between these physicochemically distinct magmatic phases suggests that gold solubility in aqueous fluids is a function of aqueous phase salinity, specifically total chloride concentration, at magmatic conditions. However, though we highlight here the effect of salinity, the combination of our data with data sets from lower temperatures evinces a significant decrease in gold solubility as temperature drops from 800°C to 600°C. This decrease in solubility has implications for gold deposition from ascending magmatic fluids.  相似文献   
56.
The detailed distribution of glacial features in the Langdale Fells is described and the uncertainties attending their explanation discussed. Although it cannot be shown that all the kettle moraines are of a single age, two of them have been dated to Zone III of the pollen-analytical chronology.  相似文献   
57.
Molybdenum (Mo) isotopes have great potential as a paleoredox indicator, but this potential is currently restricted by an incomplete understanding of isotope fractionations occurring during key (bio)geochemical processes. To address one such uncertainty we have investigated the isotopic fractionation of Mo during adsorption to a range of Fe (oxyhydr)oxides, under variable Mo/Fe-mineral ratios and pH. Our data confirm that Fe (oxyhydr)oxides can readily adsorb Mo, highlighting the potential importance of this removal pathway for the global Mo cycle. Furthermore, adsorption of Mo to Fe (oxyhydr)oxides is associated with preferential uptake of the lighter Mo isotopes. Fractionations between the solid and dissolved phase (Δ98Mo) increase at higher pH, and also vary with mineralogy, increasing in the order magnetite (Δ98Mo = 0.83 ± 0.60‰) < ferrihydrite (Δ98Mo = 1.11 ± 0.15‰) < goethite (Δ98Mo = 1.40 ± 0.48‰) < hematite (Δ98Mo = 2.19 ± 0.54‰). Small differences in isotopic fractionation are also seen at varying Mo/Fe-mineral ratios for individual minerals. The observed isotopic behaviour is consistent with both fractionation during adsorption to the mineral surface (a function of vibrational energy) and adsorption of different Mo species/structures from solution. The different fractionation factors determined for different Fe (oxyhydr)oxides suggests that these minerals likely exert a major control on observed natural Mo isotope compositions during sediment deposition beneath suboxic through to anoxic (but non-sulfidic) bottom waters. Our results confirm that Mo isotopes can provide important information on the spatial extent of different paleoredox conditions, providing they are used in combination with other techniques for evaluating the local redox environment and the mineralogy of the depositing sediments.  相似文献   
58.
NE China is the easternmost part of the Central Asian Orogenic Belt (CAOB). The area is distinguished by widespread occurrence of Phanerozoic granitic rocks. In the companion paper (Part I), we established the Jurassic ages (184–137 Ma) for three granitic plutons: Xinhuatun, Lamashan and Yiershi. We also used geochemical data to argue that these rocks are highly fractionated I-type granites. In this paper, we present Sr–Nd–O isotope data of the three plutons and 32 additional samples to delineate the nature of their source, to determine the proportion of mantle to crustal components in the generation of the voluminous granitoids and to discuss crustal growth in the Phanerozoic.

Despite their difference in emplacement age, Sr–Nd isotopic analyses reveal that these Jurassic granites have common isotopic characteristics. They all have low initial 87Sr/86Sr ratios (0.7045±0.0015), positive Nd(T) values (+1.3 to +2.8), and young Sm–Nd model ages (720–840 Ma). These characteristics are indicative of juvenile nature for these granites. Other Late Paleozoic to Mesozoic granites in this region also show the same features. Sr–Nd and oxygen isotopic data suggest that the magmatic evolution of the granites can be explained in terms of two-stage processes: (1) formation of parental magmas by melting of a relatively juvenile crust, which is probably a mixed lithology formed by pre-existing lower crust intruded or underplated by mantle-derived basaltic magma, and (2) extensive magmatic differentiation of the parental magmas in a slow cooling environment.

The widespread distribution of juvenile granitoids in NE China indicates a massive transfer of mantle material to the crust in a post-orogenic tectonic setting. Several recent studies have documented that juvenile granitoids of Paleozoic to Mesozoic ages are ubiquitous in the Central Asian Orogenic Belt, hence suggesting a significant growth of the continental crust in the Phanerozoic.  相似文献   

59.
The southern Irumide Belt (SIB) is an ENE–WSW-trending,late Mesoproterozoic orogenic belt located between the Congo–Tanzania–Bangweulu(CTB) and Kalahari cratons in central southern Africa. It isseparated from the late Mesoproterozoic Irumide Belt (IB) tothe north by Permo-Triassic graben, raising the possibilitythat the younger rifts reactivated a suture between the twobelts that has been rendered cryptic as a result of youngerKaroo cover. Both belts are dominated by calc-alkaline gneisses,but in addition the SIB contains abundant metavolcanic and metasedimentaryrocks. In this study we present detailed geochemical, isotopicand geochronological data for volcanic and plutonic lithologiesfrom the southernmost part of the SIB, the Chewore–RufunsaTerrane. This terrane comprises a wide variety of supracrustalto mid-crustal rocks that have major- and trace-element compositionssimilar to magmas formed in present-day subduction zones. Chondrite-normalizedrare earth element (REE) profiles and whole-rock Sm–Ndisotope compositions indicate that the parental supra-subductionmelts interacted with, and were contaminated by sialic continentalcrust, implying a continental-margin-arc setting. Secondaryionization mass spectrometry dating of magmatic zircon has yieldedcrystallization ages between c. 1095 and 1040 Ma, similar toelsewhere in the SIB. U–Pb dating and in situ Lu–Hfisotopic analyses of abundant xenocrystic zircon extracted fromthe late Mesoproterozoic granitoids indicate that the contaminantcontinental basement was principally Palaeoproterozoic in ageand had a juvenile isotopic signature at the time of its formation.These data are in contrast to those for the IB, which is characterizedby younger, c. 1020 Ma, calc-alkaline gneisses that formed bythe direct recycling of Archaean crust without significant additionof any juvenile material. We suggest that the SIB developedby the subduction of oceanic crust under the margin of an unnamedcontinental mass until ocean closure at c. 1040 Ma. Subsequentcollision between the SIB and the CTB margin led to the cessationof magmatism in the SIB and the initiation of compression andcrustal melting in the IB. KEY WORDS: geochemistry; Mesoproterozoic; SHRIMP zircon U–Pb dating; Sm–Nd isotopes; Southern Irumide Belt  相似文献   
60.
黑龙江杂岩的碎屑锆石年代学及其大地构造意义   总被引:9,自引:9,他引:9  
黑龙江杂岩带位于佳木斯地体西缘,为佳木斯地体向西与松嫩地体之间俯冲、拼贴、碰撞而形成的高压变质带.黑龙江杂岩沿牡丹江断裂分布,其构造-岩石组合、变质变形特征等显示其为佳木斯地体向松嫩地体俯冲拼帖的过程中形成的增生杂岩,目前保存下来的杂岩带应为大规模增生楔仰冲到佳木斯地体之上的残余部分.88颗碎屑锆石的全部样品SHRIMPU-Ph年代学测试结果显示三个主要年龄区间:170~220Ma,峰值年龄为183Ma;240~338Ma,峰值年龄为256Ma;450~520Ma,峰值年龄为470Ma.而28个碎屑锆石谐和年龄的年龄谱为两组:240~338Ma,峰值年龄为256Ma;450~500Ma,峰值年龄为470Ma.碎屑锆石年龄数据分析得到,240~338Ma峰期年龄为256Ma的年龄应代表黑龙江杂岩主体岩石的沉积年龄上限;而450~500Ma的年龄谱对应于佳木斯地体的基底变质岩年龄,显示佳木斯地体的基底变质岩曾为黑龙江杂岩的物源区;而170~210Ma,峰期年龄为183Ma的不谐和年龄应为受印支期-早侏罗世构造热事件的扰动年龄,与该区变质单矿物的Ar-Ar年龄相一致,应代表了该区陆-陆碰撞的时代.上述年龄为黑龙江杂岩的形成与演化提供了重要的地质年代学制约,即黑龙江杂岩的原岩成岩时代上限为早三叠世,佳木斯地体向西的俯冲时代主体为印支期,而陆-陆拼贴及碰撞过程主要为晚印支期并可能持续到早侏罗世.这些结果将为揭示我国东北地区构造演化的年代学格架以及三叠纪古亚洲构造域向环太平洋构造域叠加和转换的动力学背景研究提供新的基本地质事实依据.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号