Carbon stable isotopes can be used to trace the sources of energy supporting food chains and to estimate the contribution of different sources to a consumer's diet. However, the δ13C signature of a consumer is not sufficient to infer source without an appropriate isotopic baseline, because there is no way to determine if differences in consumer δ13C reflect source changes or baseline variation. Describing isotopic baselines is a considerable challenge when applying stable isotope techniques at large spatial scales and/or to interconnected food chains in open marine environments. One approach is to use filter-feeding consumers to integrate the high frequency and small-scale variation in the isotopic signature of phytoplankton and provide a surrogate baseline, but it can be difficult to sample a single consumer species at large spatial scales owing to rarity and/or discontinuous distribution. Here, we use the isotopic signature of a widely distributed filter-feeder (the queen scallop Aequipecten opercularis) in the north-eastern Atlantic to develop a model linking base δ13C to environmental variables. Remarkably, a single variable model based on bottom temperature has good predictive power and predicts scallop δ13C with mean error of only 0.6‰ (3%). When the model was used to predict an isotopic baseline in parts of the overall study region where scallop were not consistently sampled, the model accounted for 76% and 79% of the large-scale spatial variability (101–104 km) of the δ13C of two fish species (dab Limanda limanda and whiting Merlangus merlangius) and 44% of the δ13C variability in a mixed fish community. The results show that source studies would be significantly biased if a single baseline were applied to food webs at larger scales. Further, when baseline δ13C cannot be directly measured, a calculated baseline value can eliminate a large proportion of the unexplained variation in δ13C at higher trophic levels. 相似文献
Intermediate dispersion spectroscopy of a sample of 40 hot subdwarf B stars between 5500 and 9000Å has been obtained. The sample includes a large fraction of targets which have been studied photometrically. Seven targets show strong lines arising from the infrared Ca ii triplet, the unequivocal signature of a cool companion. The positive Ca ii identifications include known photometric binaries and new targets; all are associated with a photometric red excess. Assuming a canonical value for the subdwarf luminosity, all of the detected companions are overluminous compared with the main sequence. The detection procedure indicates an improved and more secure method for the measurement of the binary frequency of hot subdwarfs. 相似文献
We compute two-point correlation functions and measure the shear signal due to galaxy–galaxy lensing for 80 000 optically identified and 5700 radio-loud active galactic nuclei (AGN) from Data Release 4 of the Sloan Digital Sky Survey. Halo occupation models are used to estimate halo masses and satellite fractions for these two types of AGN. The large sample size allows us to separate AGN according to the stellar mass of their host galaxies. We study how the halo masses of optical and radio AGN differ from those of the parent population at fixed M * . Halo masses deduced from clustering and from lensing agree satisfactorily. Radio AGN are found in more massive haloes than optical AGN: in our samples, their mean halo masses are 1.6 × 1013 and 8 × 1011 h −1 M⊙ , respectively. Optical AGN follow the same relation between stellar mass and halo mass as galaxies selected without regard to nuclear properties, but radio-loud AGN deviate significantly from this relation. The dark matter haloes of radio-loud AGN are about twice as massive as those of control galaxies of the same stellar mass. This boost is independent of radio luminosity, and persists even when our analysis is restricted to field galaxies. The large-scale gaseous environment of the galaxy clearly plays a crucial role in producing observable radio emission. The dark matter halo masses that we derive for the AGN in our two samples are in good agreement with recent models in which feedback from radio AGN becomes dominant in haloes where gas cools quasi-statically. 相似文献
Southwest Pacific nations are among some of the worst impacted and most vulnerable globally in terms of tropical cyclone (TC)-induced flooding and accompanying risks. This study objectively quantifies the fractional contribution of TCs to extreme rainfall (hereafter, TC contributions) in the context of climate variability and change. We show that TC contributions to extreme rainfall are substantially enhanced during active phases of the Madden–Julian Oscillation and by El Niño conditions (particularly over the eastern southwest Pacific region); this enhancement is primarily attributed to increased TC activity during these event periods. There are also indications of increasing intensities of TC-induced extreme rainfall events over the past few decades. A key part of this work involves development of sophisticated Bayesian regression models for individual island nations in order to better understand the synergistic relationships between TC-induced extreme rainfall and combinations of various climatic drivers that modulate the relationship. Such models are found to be very useful for not only assessing probabilities of TC- and non-TC induced extreme rainfall events but also evaluating probabilities of extreme rainfall for cases with different underlying climatic conditions. For example, TC-induced extreme rainfall probability over Samoa can vary from ~ 95 to ~ 75% during a La Niña period, if it coincides with an active or inactive phase of the MJO, and can be reduced to ~ 30% during a combination of El Niño period and inactive phase of the MJO. Several other such cases have been assessed for different island nations, providing information that have potentially important implications for planning and preparing for TC risks in vulnerable Pacific Island nations.
The Southern Tail‐End Graben, Danish Central Graben, is characterized by a lateral variation in the thickness and mobility of pre‐rift Zechstein Supergroup evaporites, allowing investigation of how supra‐basement evaporite variability influences rift structural style and tectono‐stratigraphy. The study area is divided into two structural domains based on interpretations of the depositional thickness and mobility of the Zechstein Supergroup. Within each domain, we examine the overall basin morphology and the structural styles in the pre‐Zechstein and supra‐Zechstein (cover) units. Furthermore, integration of two‐way travel‐time (TWT)‐structure and ‐thickness maps allows fault activity and evaporite migration maps to be generated for pre‐ and syn‐rift stratal units within the two domains, permitting constraints to be placed on: (i) the timing of activity on pre‐Zechstein and cover faults and (ii) the onset, duration and migration direction of mobile evaporites. The northern domain is interpreted to be free from evaporite‐influence, and has developed in a manner typical of brittle‐only, basement‐involved rifts. Syn‐rift basins display classical half‐graben geometries bounded by thick‐skinned faults. In contrast, the southern domain is interpreted to be evaporite‐influenced, and cover structure reflects a southward increase in the thickness and mobility of the Zechstein Supergroup evaporites. Fault‐related and evaporite‐related folding is prominent in the southern domain, together with variable degrees of decoupling of sub‐Zechstein and cover fault and fold systems. The addition of mobile evaporites to the rift results in: (i) complex and spatially variable modes of tectono‐stratigraphic evolution; (ii) syn‐rift stratal geometries which are condensed above evaporite swells and over‐thickened in areas of withdrawal; (iii) compartmentalized syn‐rift depocentres; and (iv) masking of rift‐related megasequence boundaries. Through demonstrating these deviations from the characteristics of rifts free from evaporite influence, we highlight the first order control evaporites may exert upon rift structural style and the distribution and thicknesses of syn‐rift units. 相似文献
The Stern Review on the Economics of Climate Change concluded that there can be “no doubt” the economic risks of business-as-usual (BAU) climate change are “very severe” [Stern, 2006. The Economics of Climate Change. HM Treasury, London, p. 188]. The total cost of climate change was estimated to be equivalent to a one-off, permanent 5–20% loss in global mean per-capita consumption today. And the marginal damage cost of a tonne of carbon emitted today was estimated to be around $312 [p. 344]. Both of these estimates are higher than most reported in the previous literature. Subsequently, a number of critiques have appeared, arguing that discounting is the principal explanation for this discrepancy. Discounting is important, but in this paper we emphasise that how one approaches the economics of risk and uncertainty, and how one attempts to model the very closely related issue of low-probability/high-damage scenarios (which we connect to the recent discussion of ‘dangerous’ climate change), can matter just as much. We demonstrate these arguments empirically, using the same models applied in the Stern Review. Together, the issues of risk and uncertainty on the one hand, and ‘dangerous’ climate change on the other, raise very strongly questions about the limits of a welfare-economic approach, where the loss of natural capital might be irreversible and impossible to compensate. Thus we also critically reflect on the state-of-the-art in integrated assessment modelling. There will always be an imperative to carry out integrated assessment modelling, bringing together scientific ‘fact’ and value judgement systematically. But we agree with those cautioning against a literal interpretation of current estimates. Ironically, the Stern Review is one of those voices. A fixation with cost-benefit analysis misses the point that arguments for stabilisation should, and are, built on broader foundations. 相似文献
Large areas of Europe, especially in the Alps, are covered by carbonate rocks and in many alpine regions, karst springs are important sources for drinking water supply. Because of their high variability and heterogeneity, the understanding of the hydrogeological functioning of karst aquifers is of particular importance for their protection and utilisation. Climate change and heavy rainfall events are major challenges in managing alpine karst aquifers which possess an enormous potential for future drinking water supply. In this study, we present research from a high-alpine karst system in the UNESCO Biosphere Reserve Großes Walsertal in Austria, which has a clearly defined catchment and is drained by only one spring system. Results show that (a) the investigated system is a highly dynamic karst aquifer with distinct reactions to rainfall events in discharge and electrical conductivity; (b) the estimated transient atmospheric CO2 sink is about 270 t/a; (c) the calculated carbonate rock denudation rate is between 23 and 47 mm/1000a and (d) the rainfall-discharge behaviour and the internal flow dynamics can be successfully simulated using the modelling package KarstMod. The modelling results indicate the relevance of matrix storage in determining the discharge behaviour of the spring, particularly during low-flow periods. This research and the consequent results can contribute and initiate a better understanding and management of alpine karst aquifers considering climate change with more heavy rainfall events and also longer dry periods. 相似文献
Military training activities reduce vegetation cover, disturb crusts, and degrade soil aggregates, making the land more vulnerable to wind erosion. The objective of this study was to quantify wind erosion rates for typical conditions at the Marine Corps Air Ground Combat Center, Twentynine Palms, CA, U.S.A. Five Big Spring Number Eight (BSNE) sampler stations were installed at each of five sites. Each BSNE station consisted of five BSNE samplers with the lowest sampler at 0·05 m and the highest sampler at 1·0 m above the soil surface. Once a month, sediment was collected from the samplers for analysis. Occurrence of saltating soil aggregates was recorded every hour using Sensits, one at each site. The site with the most erosion had a sediment discharge of 311 kg m−1 over a period of 17 months. Other sites eroded much less because of significant rock cover or the presence of a crust. Hourly sediment discharge was estimated combining hourly Sensit count and monthly sediment discharge measured using BSNE samplers. More simultaneously measured data are needed to better characterize the relationship between these two and reconstruct a detailed time-series of wind erosion. This measured time-series can then be used for comparison with simulation results from process-based wind erosion models such as the Wind Erosion Prediction System (WEPS), once it has been adapted to the unique aspects of military lands. 相似文献