首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3204篇
  免费   1274篇
  国内免费   22篇
测绘学   78篇
大气科学   49篇
地球物理   2039篇
地质学   1296篇
海洋学   249篇
天文学   520篇
综合类   6篇
自然地理   263篇
  2024年   1篇
  2022年   1篇
  2021年   35篇
  2020年   65篇
  2019年   199篇
  2018年   200篇
  2017年   300篇
  2016年   334篇
  2015年   353篇
  2014年   375篇
  2013年   435篇
  2012年   295篇
  2011年   280篇
  2010年   266篇
  2009年   179篇
  2008年   221篇
  2007年   155篇
  2006年   127篇
  2005年   120篇
  2004年   101篇
  2003年   114篇
  2002年   100篇
  2001年   87篇
  2000年   91篇
  1999年   20篇
  1998年   5篇
  1997年   7篇
  1996年   3篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1977年   1篇
  1951年   1篇
排序方式: 共有4500条查询结果,搜索用时 31 毫秒
911.
Many factors impinge on local involvement in transnational corporation (TNC) networks. Two factors have not been explored, the previous economic strength of local partners and the large domestic market. This study employs site interviews and survey data in Shanghai to demonstrate that these two factors do affect the local involvement in management, industrial linkages, and technology transfer. The paper discusses China's cultural and political background, TNC's market‐capture motive, and equity joint ventures as the most common entry modes. The influence appears more evident when the two factors come together in joint ventures. Evidence also suggests that the overall localization level in Shanghai is lower than in some other developing countries because of the novelty of TNC investment in the city. On this account, as joint ventures constitute the main mode of TNC investment, increasing localization is anticipated in the years ahead.  相似文献   
912.
Phase equilibria modelling of post‐peak metamorphic mineral assemblages in (ultra)high‐P mafic eclogite from the Tso Morari massif, Ladakh Himalaya, northwest India, has provided new insights into the potential behaviour and source of metamorphic fluid during exhumation, and constrained the P–T conditions of hydration. A series of PM(H2O) pseudosections constructed in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) system show that a number of petrographically distinct hydration episodes occurred during exhumation from peak P–T conditions (~640 °C, 27–28 kbar), resulting in the formation of abundant compositionally zoned amphibole and minor clinozoisite poikiloblasts at the expense of a peak assemblage dominated by garnet and omphacite. Initial hydration is interpreted to have occurred as a result of the destabilization of talc following isothermal decompression to ~23 kbar, which led to the formation of barroisite–winchite amphibole core domains. An episode of fluid infiltration from an external source at ~19 kbar, with or without syn‐decompressional cooling to ~560 °C, resulted in further barroisitic–winchitic amphibole growth, followed by the formation of clinozoisite poikiloblasts. Continued buoyancy‐driven exhumation to the base of the lower crust is constrained to have taken place with no additional fluid input. A final hydration event is characterized by the formation of magnesiohornblende rims on the barroisite–winchite cores, with the former interpreted to have formed during later prograde overprinting in the middle crust associated with the final stages of exhumation. Notably, the vast majority of externally sourced H2O, comprising just over half of the current bulk rock fluid content, was added during this later hydration event. In a middle crustal setting, this is interpreted as the result of devolatilization reactions occurring in migmatitic host orthogneiss and/or metasedimentary units, or following the crystallization of partial melt.  相似文献   
913.
Considering heterogeneity in porous media pore size and connectivity is essential to predicting reactive solute transport across interfaces. However, exchange with less‐mobile porosity is rarely considered in surface water/groundwater recharge studies. Previous research indicates that a combination of pore‐fluid sampling and geoelectrical measurements can be used to quantify less‐mobile porosity exchange dynamics using the time‐varying relation between fluid and bulk electrical conductivity. For this study, we use macro‐scale (10 s of cm) advection–dispersion solute transport models linked with electrical conduction in COMSOL Multiphysics to explore less‐mobile porosity dynamics in two different types of observed sediment water interface porous media. Modeled sediment textures contrast from strongly layered streambed deposits to poorly sorted lakebed sands and cobbles. During simulated ionic tracer perturbations, a lag between fluid and bulk electrical conductivity, and the resultant hysteresis, is observed for all simulations indicating differential loading of pore spaces with tracer. Less‐mobile exchange parameters are determined graphically from these tracer time series data without the need for inverse numerical model simulation. In both sediment types, effective less‐mobile porosity exchange parameters are variable in response to changes in flow direction and fluid flux. These observed flow‐dependent effects directly impact local less‐mobile residence times and associated contact time for biogeochemical reaction. The simulations indicate that for the sediment textures explored here, less‐mobile porosity exchange is dominated by variable rates of advection through the domain, rather than diffusion of solute, for typical low‐to‐moderate rate (approximately 3–40 cm/day) hyporheic fluid fluxes. Overall, our model‐based results show that less‐mobile porosity may be expected in a range of natural hyporheic sediments and that changes in flowpath orientation and magnitude will impact less‐mobile exchange parameters. These temporal dynamics can be assessed with the geoelectrical experimental tracer method applied at laboratory and field scales.  相似文献   
914.
The Altyn Tagh Fault (ATF) serves as a key continental‐scale controlling structural element of the Tibetan Plateau. However, its eastward extent remains controversial. Here we use high‐resolution seismic reflection profiles to investigate the subsurface structures of the easternmost ATF and use these to delimit the easternmost extent of the fault. The structural analyses show an eastward geometric change from transpressional positive flower structures to compressional thrusts, with transpression‐induced shortening magnitudes decreasing eastwards from a maximum of ~5.3 km to being absent. Stratigraphic controls indicate that the deformation took place over the last ~<1.2 Ma. Our wider findings lead us to: (a) reject the suggestion that the ATF previously extended beyond the Kuantan Shan‐Hei Shan to link with the Alxa‐East Mongolia Fault; and (b) propose that the rigid block model used to describe the Tibetan Plateau crust is not consistent with the extent and structural details of the easternmost ATF.  相似文献   
915.
The Harletz loess‐palaeosol sequence is located in northwestern Bulgaria and represents an important link between well‐studied loess sequences in eastern Romania and further sites to the west of the Carpathians (e.g. Serbia and Hungary). The aim of this study was to establish a chronostratigraphy of the deposits, using various methods of luminescence dating, together with basic stratigraphical field observations as well as magnetic properties. Luminescence dating was carried out using the quartz fine grain fraction and a SAR protocol, and the feldspar coarse grain fraction, applying the MET‐pIRIR protocol. Due to underestimation of the quartz fine grain fraction in the lower parts of the sequence, the resulting chronology is mainly based on the feldspar ages, which are derived from the stimulation temperature at 150 °C. A comparison with nearby sequences from Serbia, Hungary and Romania, and interpretations obtained through the stratigraphical and sedimentological signature of the sequence, supports the established chronology. Our data suggest that the prominent palaeosol (soil complex) in the upper quarter of the sequence was formed during MIS 5. It would follow that large parts of the Last Glacial loess overlying this palaeosol were probably eroded, and that the thick loess accumulation underlying this soil complex can be allocated to the penultimate glacial (MIS 6). A prominent MIS 6 tephra, which has been reported from other sequences in the area, is also present at Harletz.  相似文献   
916.
At sub‐arc depths, the release of carbon from subducting slab lithologies is mostly controlled by fluid released by devolatilization reactions such as dehydration of antigorite (Atg‐) serpentinite to prograde peridotite. Here we investigate carbonate–silicate rocks hosted in Atg‐serpentinite and prograde chlorite (Chl‐) harzburgite in the Milagrosa and Almirez ultramafic massifs of the palaeo‐subducted Nevado‐Filábride Complex (NFC, Betic Cordillera, S. Spain). These massifs provide a unique opportunity to study the stability of carbonate during subduction metamorphism at PT conditions before and after the dehydration of Atg‐serpentinite in a warm subduction setting. In the Milagrosa massif, carbonate–silicate rocks occur as lenses of Ti‐clinohumite–diopside–calcite marbles, diopside–dolomite marbles and antigorite–diopside–dolomite rocks hosted in clinopyroxene‐bearing Atg‐serpentinite. In Almirez, carbonate–silicate rocks are hosted in Chl‐harzburgite and show a high‐grade assemblage composed of olivine, Ti‐clinohumite, diopside, chlorite, dolomite, calcite, Cr‐bearing magnetite, pentlandite and rare aragonite inclusions. These NFC carbonate–silicate rocks have variable CaO and CO2 contents at nearly constant Mg/Si ratio and high Ni and Cr contents, indicating that their protoliths were variable mixtures of serpentine and Ca‐carbonate (i.e., ophicarbonates). Thermodynamic modelling shows that the carbonate–silicate rocks attained peak metamorphic conditions similar to those of their host serpentinite (Milagrosa massif; 550–600°C and 1.0–1.4 GPa) and Chl‐harzburgite (Almirez massif; 1.7–1.9 GPa and 680°C). Microstructures, mineral chemistry and phase relations indicate that the hybrid carbonate–silicate bulk rock compositions formed before prograde metamorphism, likely during seawater hydrothermal alteration, and subsequently underwent subduction metamorphism. In the CaO–MgO–SiO2 ternary, these processes resulted in a compositional variability of NFC serpentinite‐hosted carbonate–silicate rocks along the serpentine‐calcite mixing trend, similar to that observed in serpentinite‐hosted carbonate‐rocks in other palaeo‐subducted metamorphic terranes. Thermodynamic modelling using classical models of binary H2O–CO2 fluids shows that the compositional variability along this binary determines the temperature of the main devolatilization reactions, the fluid composition and the mineral assemblages of reaction products during prograde subduction metamorphism. Thermodynamic modelling considering electrolytic fluids reveals that H2O and molecular CO2 are the main fluid species and charged carbon‐bearing species occur only in minor amounts in equilibrium with carbonate–silicate rocks in warm subduction settings. Consequently, accounting for electrolytic fluids at these conditions slightly increases the solubility of carbon in the fluids compared with predictions by classical binary H2O–CO2 fluids, but does not affect the topology of phase relations in serpentinite‐hosted carbonate‐rocks. Phase relations, mineral composition and assemblages of Milagrosa and Almirez (meta)‐serpentinite‐hosted carbonate–silicate rocks are consistent with local equilibrium between an infiltrating fluid and the bulk rock composition and indicate a limited role of infiltration‐driven decarbonation. Our study shows natural evidence for the preservation of carbonates in serpentinite‐hosted carbonate–silicate rocks beyond the Atg‐serpentinite breakdown at sub‐arc depths, demonstrating that carbon can be recycled into the deep mantle.  相似文献   
917.
Integrating stable isotope tracers into rainfall‐runoff models allows investigation of water partitioning and direct estimation of travel times and water ages. Tracer data have valuable information content that can be used to constrain models and, in integration with hydrometric observations, test the conceptualization of catchment processes in model structure and parameterization. There is great potential in using tracer‐aided modelling in snow‐influenced catchments to improve understanding of these catchments' dynamics and sensitivity to environmental change. We used the spatially distributed tracer‐aided rainfall‐runoff (STARR) model to simulate the interactions between water storage, flux, and isotope dynamics in a snow‐influenced, long‐term monitored catchment in Ontario, Canada. Multiple realizations of the model were achieved using a combination of single and multiple objectives as calibration targets. Although good simulations of hydrometric targets such as discharge and snow water equivalent could be achieved by local calibration alone, adequate capture of the stream isotope dynamics was predicated on the inclusion of isotope data in the calibration. Parameter sensitivity was highest, and most local, for single calibration targets. With multiple calibration targets, key sensitive parameters were still identifiable in snow and runoff generation routines. Water ages derived from flux tracking subroutines in the model indicated a catchment where runoff is dominated by younger waters, particularly during spring snowmelt. However, resulting water ages were most sensitive to the partitioning of runoff sources from soil and groundwater sources, which was most realistically achieved when isotopes were included in the calibration. Given the paucity of studies where hydrological models explicitly incorporate tracers in snow‐influenced regions, this study using STARR is an important contribution to satisfactorily simulating snowpack dynamics and runoff generation processes, while simultaneously capturing stable isotope variability in snow‐influenced catchments.  相似文献   
918.
919.
Dilatation of aquifer and associated water level fluctuation in groundwater well is known to be driven periodically from lunar, solar, or other tidal forces. Time‐dependent variables in groundwater system, such as water level, can be converted to power spectra in the frequency domain using Fourier transform to evaluate significant fluctuation. The major innovation of this research is to develop spectral representation in frequency domain for the groundwater system that the storage in confined aquifer can be determined considering dilatation affected by Earth tides and barometric effect. In order to verify applicability of the evolved method, time series of Earth tides and barograph are collected; aquifer storage is then determined inversely by selecting significant semidiurnal and diurnal components in spectra computation. It suggests that to discover groundwater storage using groundwater level with barograph and tidal potential of Earth in frequency domain becomes accessible and feasible.  相似文献   
920.
To assess the reliability of arboreal phytoliths for differentiating vegetation types in temperate forest regions, we systematically analysed arboreal leaf phytoliths from 72 arboreal plants and 49 modern soils from three forest types in northeast China. The arboreal leaf phytolith production and morphotypes were highly variable between species. The arboreal leaf phytolith assemblages could clearly distinguish between broadleaf and coniferous species, but they were much less successful in differentiating broadleaved trees into subtaxa. Coniferous leaf morphotypes were successfully used to differentiate coniferous trees into families and subtaxa, especially in the Pinaceae. Two diagnostic broadleaved and six coniferous phytolith morphotypes were recognized within the modern soil beneath forest ecosystems. These arboreal phytoliths comprised up to 10–15% of the total soil phytoliths, and were dominated by coniferous types. Arboreal phytolith concentrations and phytolith assemblages in the soils fluctuated substantially amongst the three forest types. Soil arboreal phytolith assemblages were successfully used to differentiate samples from Larix mixed forest, broadleaf forest and Pinus koraiensis mixed forest. In addition, the arboreal index quantitatively distinguished the three forest types, with B/BE values <0.4 for Larix mixed forest samples, values from 0.4 to 0.6 for broadleaf forest samples, and values from 0.6 to 0.9 for P. koraiensis mixed forest. Thus, our surface soil arboreal phytolith assemblages and arboreal index are a useful reference for differentiating forest ecotypes, and they also provide reliable analogues for arboreal phytoliths from palaeoecological contexts in temperate forest regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号