首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   14篇
  国内免费   2篇
测绘学   2篇
大气科学   20篇
地球物理   76篇
地质学   121篇
海洋学   45篇
天文学   47篇
综合类   3篇
自然地理   11篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   14篇
  2016年   9篇
  2015年   2篇
  2014年   14篇
  2013年   14篇
  2012年   13篇
  2011年   10篇
  2010年   17篇
  2009年   9篇
  2008年   26篇
  2007年   15篇
  2006年   10篇
  2005年   10篇
  2004年   15篇
  2003年   21篇
  2002年   4篇
  2001年   5篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   6篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   4篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1980年   5篇
  1979年   2篇
  1978年   5篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   2篇
  1968年   2篇
排序方式: 共有325条查询结果,搜索用时 46 毫秒
21.
Tomoaki  Morishita  Shoji  Arai  Yoshito  Ishida 《Island Arc》2007,16(1):40-56
Abstract   Trace-element compositions of jadeite (±omphacite) in jadeitites from the Itoigawa-Ohmi district of Japan, analyzed by a laser-ablation inductively coupled plasma mass spectrometry technique showed chemical zoning within individual grains and variations within each sample and between different samples. Primitive mantle-normalized patterns of jadeite in the samples generally showed high large-ion lithophile element contents, high light rare earth element/heavy rare earth element ratios and positive anomalies of high field strength elements. The studied jadeitites have no signatures of the protolith texture or mineralogy. Shapes and distributions of minerals coupled with chemical zoning within grains suggest that the jadeitites were formed by direct precipitation of minerals from aqueous fluids or complete metasomatic modification of the precursor rocks by fluids. In either case, the geochemical characteristics of jadeite are highly affected by fluids enriched in both large-ion lithophile elements and high field strength elements. The specific fluids responsible for the formation of jadeitites are related to serpentinization by slab-derived fluids in subduction zones. This process is followed by dissolving high field strength elements in the subducting crust as the fluids continue to circulate into the subducting crusts and serpentinized peridotites. The fluids have variations in chemical compositions corresponding to various degrees of water–rock interactions.  相似文献   
22.
大气臭氧与气溶胶垂直分布的高空气球探测   总被引:17,自引:2,他引:17  
本文给出了1993年9月12日利用高空科学气球在河北省香河地区探测到的大气臭氧和气溶胶的垂直分布。结果发现:(1) 大气臭氧的数密度在整个对流层较低(~10[12]mol/cm3),并从地面到对流层顶略有下降;对流层顶以上开始快速增加,极值层高度在~24 km,其值为4.78×10[12]mol/cm3;臭氧分压有类似的分布特征,极值146×10[-4]Pa,位于同一高度;(2) 在平流层低层,臭氧分压有一个次极值62×10[-4]Pa,位于15~16 km;(3) 0~30 km大气气溶胶数密度呈现出三个峰值:143,8和1.1 个/cm[3],分别位于近地面、5 km和21 km;(4)气溶胶的数密度谱在对流层为双模态;在平流层,次峰消失。同时,我们还与其他观测结果作了比较分析。  相似文献   
23.
Convective instability and overstability of a plane-parallel medium in the presence of a uniform vertical magnetic field is studied. We take into account both the effect of penetration of disturbances into sub-adiabatically stratified semi-infinite upper and lower layers, and the effect of thermal damping of disturbances introduced by the compressibility of the medium. If the degree of super-adiabaticity in temperature stratification in the middle layer is relatively large compared with that of sub-adiabaticity in the upper and lower layers, the range of physical conditions in which overstable convection occurs is very narrow. However, if it is not the case the range is rather wide. In the normal sunspot umbra, only disturbances with selected sizes in vertical dimension will be able to become overstable. The overstable convection might be a cause of some dynamical features (such as dots) in the sunspot umbra, but will not be the main contributor for transporting mechanical energy in the sunspot region.  相似文献   
24.
25.
The Happo-O’ne peridotite complex is situated in the northeastern part of the Hida Marginal Tectonic Zone, central Japan, characterized by the high-P/T Renge metamorphism, and is considered as a serpentinite mélange of Paleozoic age. Peridotitic rocks, being massive or foliated, have been subjected to hydration and metamorphism. Their protoliths are mostly lherzolites to harzburgites with subordinate dunites. We found a characteristic mineral assemblage, olivine + orthopyroxene + tremolite + chlorite + chromian spinel, being stable at low-T, from 650 to 750°C, and high-P, from 16 to 20 kbar, tremolite–chlorite peridotites of the tremolite zone. Olivines are Fo88–Fo91, and orthopyroxenes (Mg# = 0.91) show low and homogenous distributions of Al2O3 (up to 0.25 wt%), Cr2O3 (up to 0.25 wt%), CaO (up to 0.36 wt%) and TiO2 (up to 0.06 wt%) due to the low equilibration temperature. Chromian spinels, which are euhedral and enclosed mainly in the orthopyroxenes, have high TiO2, 3.1 wt% (up to 5.7 wt%) on average, and high Cr# [=Cr/(Cr + Al) atomic ratio], 0.95 on average but low Fe3+ [=Fe3+/(Cr + Al + Fe3+) atomic ratio, <0.3]. The bulk-rock chemistry shows that the Happo-O’ne metaperidotites with this peculiar spinel are low in TiO2 (0.01–0.02 wt%), indicating no addition of TiO2 from the outside source during the metamorphism; the high TiO2 of the peculiar spinel has been accomplished by Ti release from Ti-bearing high-T pyroxenes during the formation of low-T, low-Ti silicates (<0.1 wt% TiO2) during cooling. Some dunites are intact from hydration: their olivine is Fo92 and spinel shows high Cr#, 0.72. The Happo-O’ne metaperidotites (tremolite–chlorite peridotites), being in the corner of the mantle wedge, are representative of a hydrous low-T, high-P mantle peridotite facies transitional from a higher T anhydrous peridotite facies (spinel peridotites) formed by in situ retrograde metamorphism influenced by fluids from the subducting slab. They have suffered from low-T (<600°C) retrogressive metamorphism to form antigorite and diopside during exhumation of the Renge metamorphic belt.  相似文献   
26.
Based on the analysis of observations from a 213-m tall meteorological tower at Tsukuba, Japan, we have investigated the favourable conditions for the predominant existence of large-scale turbulence structures in the near-neutral atmospheric boundary layer (ABL). From the wavelet variance spectrum for the streamwise velocity component ( $u$ ) measured by a sonic anemometer-thermometer at the highest level (200 m), large-scale structures (time-scale range of 100–300 s) predominantly exist under slightly unstable and close to neutral conditions. The emergence of large-scale structures also can be related to the diurnal evolution of the ABL. The large-scale structures play an important role in the overall flow structure of the lower boundary layer. For example, $u$ velocity components at the 200-m and 50-m levels show relatively high correlation with the existence of large-scale structures. Under slightly unstable (near-neutral) conditions, a low-speed region in advance of the high-speed structure shows a positive deviation of temperature and appears as the plume structure that is forced by buoyancy in the heated lower layer. In spite of the difference in buoyancy effects between the near-neutral and unstable cases, large-scale structures are frequently observed in both cases and the same vertical correlation of $u$ components is indicated. However, the vertical wind shear is smaller in the unstable cases. On the other hand, in near-neutral cases, the transport efficiency of momentum at the higher level and the flux contribution of sweep motions are larger than those in the unstable cases.  相似文献   
27.
The Eocene dyke swarm with east-west general trend intrudes the Cretaceous sedimentary rocks in ~25 km north of the Khur city (Central Iran). Some of the studied dykes can be followed for over 7 km, but the majority of exposures in the area are less than 5 km long. The dykes commonly exhibit a chilled contact with the wall rocks. These dykes are trachybasalt and basalt in composition. The trachybasalt dykes are much more abundant. The basaltic dykes cross cut the trachybasalt dykes in some locations, indicating that trachybasalt dykes are older than the basaltic ones. Primary igneous minerals of the basaltic dykes are olivine (chrysolite), clinopyroxene (diopside, augite), plagioclase (labradorite), sanidine, magnetite, orthopyroxene (enstatite), spinel and phlogopite, and secondary minerals are zeolite (natrolite and mesolite), chlorite (diabantite), calcite and serpentine. The trachybasalt dykes are composed of clinopyroxene (diopside), plagioclase (labradorite), sanidine, mica (biotite and phlogopite), amphibole (magnesio-hastingsite) and magnetite as primary minerals, and chlorite and calcite as secondary ones. Whole rocks geochemical data of the studied dykes indicate their basic and calc-alkaline nature and suggest that these two set of dykes were derived from the same parental magma. The chondrite-normalized REE patterns and the primitive mantle-normalized multi-elemental diagram of the Khur dykes show enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE), and negative anomalies of high field strength elements (HFSE) (e.g. Ti, Nb and Ta). These rocks show enrichment of the large ion lithophile elements (LILE) (e.g. Cs, Ba, Th and U) and depletion of the HREE and Y relative to MREE, Zr and Hf. In the chondrite-normalized REE diagram, the basalts show elevated REE abundances relative to the trachybasalt samples. Geochemical analyses of the studied samples suggest a spinel lherzolite from the mantle as the source rock and confirm the role of subduction in their generation. The chemical characteristics of the Khur dykes resemble those of continental arc rocks, and they were possibly formed by subduction of the Central-East Iranian microcontinent (CEIM) confining oceanic crust and decompression melting of a lithospheric subcontinental mantle spinel lherzolite enriched by subduction.  相似文献   
28.
Recent reassessment of abyssal peridotites obtained during the dredging of the oblique supersegment and the easternmost subsection of the Southwest Indian Ridge by the R/V Knorr Cruise 162 and the R/V Yokosuka YK98-07 revealed the occurrence of dunites containing podiform chromitites and dunites with variable chromite concentration closely associated with lherzolite and harzburgite. The size of the chromitite pods varies from a few mm to 2 cm in width. Chromites in the podifom chromitites have very low Cr# (=0.22–0.23) and low TiO2 (<0.17 wt%). They are almost free of silicate inclusions except for a few euhedral sulfide grains which occur far from cracks and lamellae and are considered primary in origin. The lherzolite which possibly represents the wallrock hosting the dunites with podiform chromitites also show low spinel Cr#(=0.16) and low Cr# in the clinopyroxenes (=0.09–0.10) and orthopyroxenes (=0.07–0.09). The small size of the SWIR podiform chromitites is strongly controlled by the low Cr/Al available in the wallrock and the invading melt. The presence of sulfide inclusions and the absence of PGEs further attest to the low Cr/Al (i.e. low refractoriness) in the system involved in the genesis of the SWIR podiform chromitites. Lastly, the discovery of podiform chromitites in the SWIR implies that the formation of podiform chromitite at mid-oceanic ridges, regardless of its spreading rate, is highly possible.  相似文献   
29.
Climate warming and human disturbance in north‐western Canada have been accompanied by degradation of permafrost, which introduces considerable uncertainty to the future availability of northern freshwater resources. This study demonstrates the rate and spatial pattern of permafrost loss in a region that typifies the southern boundary of permafrost. Remote‐sensing analysis of a 1·0 km2 area indicates that permafrost occupied 0·70 km2 in 1947 and decreased with time to 0·43 km2 by 2008. Ground‐based measurements demonstrate the importance of horizontal heat flows in thawing discontinuous permafrost, and show that such thaw produces dramatic land‐cover changes that can alter basin runoff production in this region. A major challenge to northern water resources management in the twenty‐first century therefore lies in predicting stream flows dynamically in the context of widely occurring permafrost thaw. The need for appropriate water resource planning, mitigation, and adaptation strategies is explained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
30.
<正>Chromite is a typical refractory igneous mineral,precipitated from mafic magmas at relatively high temperatures.Chromites commonly occur in sedimentary,metamorphic and metasomatic rocks,where they are interpreted as relics of an igneous phase and serve as the source of Cr for low-temperature Cr-bearing minerals.We  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号