首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   539篇
  免费   24篇
  国内免费   9篇
测绘学   19篇
大气科学   40篇
地球物理   138篇
地质学   213篇
海洋学   43篇
天文学   73篇
综合类   6篇
自然地理   40篇
  2022年   8篇
  2021年   9篇
  2020年   12篇
  2019年   4篇
  2018年   19篇
  2017年   10篇
  2016年   17篇
  2015年   16篇
  2014年   22篇
  2013年   30篇
  2012年   10篇
  2011年   28篇
  2010年   22篇
  2009年   27篇
  2008年   19篇
  2007年   24篇
  2006年   27篇
  2005年   11篇
  2004年   15篇
  2003年   23篇
  2002年   19篇
  2001年   8篇
  2000年   7篇
  1999年   8篇
  1998年   8篇
  1997年   6篇
  1996年   9篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1992年   4篇
  1991年   6篇
  1990年   5篇
  1988年   5篇
  1987年   4篇
  1984年   7篇
  1983年   4篇
  1982年   3篇
  1981年   8篇
  1980年   4篇
  1979年   6篇
  1978年   7篇
  1977年   5篇
  1975年   9篇
  1974年   6篇
  1973年   10篇
  1972年   4篇
  1970年   7篇
  1966年   4篇
  1954年   3篇
排序方式: 共有572条查询结果,搜索用时 31 毫秒
101.
在山东半岛东南端的乳山海阳所,角闪岩和长英质片麻岩呈互层产出.在某些角闪岩层的中心残留有弱变形的麻粒岩和强变形的过渡榴辉岩(斜长石榴辉岩)团块.在弱变形的麻粒岩团块中发育有窄的(<1cm)剪切条带.沿着这些剪切条带和在强变形过渡榴辉岩团块中,原麻粒岩被转化为含斜长石的过渡榴辉岩.变形和流体在这一转化过程中加速了元素扩散和迁移的速度,在变形强和有流体加入的部位麻粒岩向榴辉岩转化的程度明显增强.麻粒岩相矿物组合(Cpx-Ⅰ+Opx+Pl-Ⅰ+ Hbl-Ⅰ + Grt-Ⅰ+ Ilm)及其花岗变晶结构被完好地保存于弱变形的麻粒岩中,其矿物成分显示出0.8~0.9 GPa和780℃~830℃的麻粒岩相变质条件.榴辉岩相叠加在麻粒岩中形成了一系列的环边状矿物和结构:环边状石榴石(Grt-Ⅱ)形成于麻粒岩相斜长石(Pl-Ⅰ)和暗色矿物(如Cpx-Ⅰ、Opx和Hbl-Ⅰ)的交界处,细粒石榴石(Grt-Ⅱ)、富钠单斜辉石(Cpx-Ⅱ)和石英形成于麻粒岩相角闪石(Hbl-Ⅰ)的外缘.同时榴辉岩相叠加造成麻粒岩相单斜辉石边缘钙契尔马克组份的降低和硬玉组份的升高.但在弱变形的麻粒岩中,麻粒岩相单斜辉石(Cpx-Ⅰ)的外缘并无榴辉岩相单斜辉石形成.沿着弱变形麻粒岩中的剪切条带和在过渡榴辉岩中,榴辉岩相矿物[Grt-Ⅱ+ Omp/Di(Cpx-Ⅱ)+ Ab(Pl-Ⅱ)+ Qtz + Hbl-Ⅱ+ Ky + Zo + Rut]广泛发育,它们的定向排列形成了明显的面理.其形成的温压条件为1.0~1.4 GPa和560℃~680℃,为过渡榴辉岩相变质.虽然其中仍然残留有被拉长的麻粒岩相单斜辉石,但它们含有很高的硬玉组份,且其外缘环绕有细粒的钠质透辉石或绿辉石(Cpx-Ⅱ).海阳所榴辉岩相变质的温压条件远远低于位于海阳所东南和东北的苏鲁超高压变质带中柯石英榴辉岩变质的温压条件.因此海阳所地区代表一条不同于超高压变质带的冷榴辉岩带,它可能与大别山南部的冷榴辉岩带相当.苏鲁超高压变质带的南部边界位于海阳所以北.  相似文献   
102.
The combined information about sedimentary petrography from the North Alpine Foreland Basin and structural geology from the Alps allows a qualitative reconstruction of the drainage network of the central Swiss Alps between 30 Ma and the present. This study suggests that crustal thickening and crustal thinning significantly controlled the location of the drainage divide. It also reveals the possible controls of crustal thickening/thinning on the change of the orientation of the drainage network from across-strike between 30 and 14 Ma to along-strike thereafter. Initial crustal thickening in the rear of the wedge is considered to have formed the drainage divide between north and south at 30 Ma. Because the location of crustal thickening shifted from east to west between ≈30–20 Ma, the catchment areas of the eastern dispersal systems reached further south than those of the western Alpine palaeorivers for the same time slice. Similarly, the same crustal dynamics appear to have controlled two phases of denudation that are reflected in the Molasse Basin by petrographic trends. Uplift in the rear of the wedge caused the Alpine palaeorivers to expand further southward. This is reflected in the foreland basin by increasing admixture of detritus from structurally higher units. However, tectonic quiescence in the rear of the wedge allowed the Alpine palaeorivers to cut down into the Alpine edifice, resulting in an increase of detritus from structurally lower units. Whereas uplift in the rear of the wedge was responsible for initiation of the Alpine drainage systems, underplating of the external massifs some 50 km further north is thought to have caused along-strike deviation of the major Alpine palaeorivers. Besides crustal thickening, extension in the rear of the wedge appears to have significantly controlled the evolution of the drainage network of the western Swiss Alps. Slip along the Simplon detachment fault exposed the core of the Lepontine dome, and caused a 50-km-northward shift of the drainage divide.  相似文献   
103.
In rivers draining the Himalaya-Tibetan-Plateau region, the 26Mg/24Mg ratio has a range of 2‰ and the 44Ca/42Ca ratio has a range of 0.6‰. The average δ26Mg values of tributaries from each of the main lithotectonic units (Tethyan Sedimentary Series (TSS), High Himalayan Crystalline Series (HHCS) and Lesser Himalayan Series (LHS)) are within 2 standard deviation analytical uncertainty (0.14‰). The consistency of average riverine δ26Mg values is in contrast to the main rock types (limestone, dolostone and silicate) which range in their average δ26Mg values by more than 2‰. Tributaries draining the dolostones of the LHS differ in their values compared to tributaries from the TSS and HHCS. The chemistry of these river waters is strongly influenced by dolostone (solute Mg/Ca close to unity) and both δ26Mg (−1.31‰) and (0.64‰) values are within analytical uncertainty of the LHS dolostone. These are the most elevated values in rivers and rock reported so far demonstrating that both riverine and bedrock values may show greater variability than previously thought.Although rivers draining TSS limestone have the lowest values at −1.41 and 0.42‰, respectively, both are offset to higher values compared to bedrock TSS limestone. The average δ26Mg value of rivers draining mainly silicate rock of the HHCS is −1.25‰, lower by 0.63‰ than the average silicate rock. These differences are consistent with a fractionation of δ26Mg values during silicate weathering. Given that the proportion of Mg exported from the Himalaya as solute Mg is small, the difference in 26Mg/24Mg ratios between silicate rock and solute Mg reflects the 26Mg/24Mg isotopic fractionation factor () between silicate and dissolved Mg during incongruent silicate weathering. The value of of 0.99937 implies that in the TSS, solute Mg is primarily derived from silicate weathering, whereas the source of Ca is overwhelmingly derived from carbonate weathering. The average value in HHCS rivers is within uncertainty of silicate rock at 0.39‰. The widespread hot springs of the High Himalaya have an average δ26Mg value of −0.46‰ and an average value of 0.5‰, distinct from riverine values for δ26Mg but similar to riverine values. Although rivers draining each major rock type have and δ26Mg values in part inherited from bedrock, there is no correlation with proxies for carbonate or silicate lithology such as Na/Ca ratios, suggesting that Ca and Mg are in part recycled. However, in spite of the vast contrast in vegetation density between the arid Tibetan Plateau and the tropical Lesser Himalaya, the isotopic fractionation factor for Ca and Mg between solute and rocks are not systematically different suggesting that vegetation may only recycle a small amount of Ca and Mg in these catchments.The discrepancy between solute and solid Ca and Mg isotope ratios in these rivers from diverse weathering environments highlight our lack of understanding concerning the origin and subsequent path of Ca and Mg, bound as minerals in rock, and released as cations in rivers. The fractionation of Ca and Mg isotope ratios may prove useful for tracing mechanisms of chemical alteration. Ca isotope ratios of solute riverine Ca show a greater variability than previously acknowledged. The variability of Ca isotope ratios in modern rivers will need to be better quantified and accounted for in future models of global Ca cycling, if past variations in oceanic Ca isotope ratios are to be of use in constraining the past carbon cycle.  相似文献   
104.
Generating one realization of a random permeability field that is consistent with observed pressure data and a known variogram model is not a difficult problem. If, however, one wants to investigate the uncertainty of reservior behavior, one must generate a large number of realizations and ensure that the distribution of realizations properly reflects the uncertainty in reservoir properties. The most widely used method for conditioning permeability fields to production data has been the method of simulated annealing, in which practitioners attempt to minimize the difference between the ’ ’true and simulated production data, and “true” and simulated variograms. Unfortunately, the meaning of the resulting realization is not clear and the method can be extremely slow. In this paper, we present an alternative approach to generating realizations that are conditional to pressure data, focusing on the distribution of realizations and on the efficiency of the method. Under certain conditions that can be verified easily, the Markov chain Monte Carlo method is known to produce states whose frequencies of appearance correspond to a given probability distribution, so we use this method to generate the realizations. To make the method more efficient, we perturb the states in such a way that the variogram is satisfied automatically and the pressure data are approximately matched at every step. These perturbations make use of sensitivity coefficients calculated from the reservoir simulator.  相似文献   
105.
Variation in seedling/sapling densities and stand diameter forms for six coniferous tree species is related to stand structural development and to elevation and topography in Lassen Volcanic National Park, California. Understory density patterns reflect differences in species tolerance; densities decrease with stand development for shade intolerant pines, but increase for shade tolerant firs and mountain hemlock. Pine species exhibit reverse-J diamter structures on recently disturbed sites, and decreaser and random forms elsewhere. More tolerant fir species show topographically mediated patterns of diameter structure, with reverse-J form common on northerly exposures and upland sites, but with decreaser and random forms on more xeric slopes. Interaction among species tolerance, environmental setting, and disturbance history yields a complex mosaic of stand diameter structures in the Lassen landscape.  相似文献   
106.
The Jharia coalfield is the most important and active minig region; it experiences groundwater inflow and affects groundwater levels in overlying aquifers, and it provides the basis for a conceptual model of the hydrogeological impacts of coal mining. The several sandstone aquifers of the overburden are separated by aquitards that limit vertical hydraulic connection, but the inflow responds to seasonal events and seems to be linked to shallow groundwater behavior. The mine drainage behavior suggests a hydraulic connection between the mine and the shallower groundwater system. The greatest declines are directly above the panels, with an immediate response to coal mining. The inflow is localized by natural and induced fracture zones and is mostly into recent workings. The groundwater behavior is controlled by hydraulic property changes caused by mine-induced fracturing. The hydrological and chemical qualities of the shallow groundwater regime in 13 mining collieries in Mukunda Block have been investigated. Water samples collected from 30 shallow monitoring dug wells were chosen for the study. Rainfall, runoff, and infiltration rates have been calculated in the area. The water-quality plottings were used to interpret the distribution of individual chemical parameters and in predicting the water quality. The underground mine water has been classified as: (1) unconfined groundwater in the calcareous siltstone and sandstone—its composition is Na, Ca, SO4 and Na-MgHCO3 with moderate total dissolved solids (TDS) 200–1480 ppm; (2) the deep groundwater originating from the coal seams and associated sediments in the near-surface environments—this is a Na-HCO3 water with higher TDS; and (3) spoil dump waters are essentially Na-HCO3 with high TDS. This article presents some hydrologic results and conclusions relating to the hydrogeological and environmental impacts of the coal mining in the Jharia coalfield.  相似文献   
107.
108.
In the coastal waters off northern California, seasonal wind-driven upwelling supplies abundant nutrients to be processed by phytoplankton productivity. As part of the Coastal Ocean Processes: Wind Events and Shelf Transport (CoOP WEST) study, nutrients, CO2, size-fractionated chlorophyll, and phytoplankton community structure were measured in the upwelling region off Bodega Bay, CA, during May–June 2000, 2001 and 2002. The ability of this ecosystem to assimilate nitrate (NO3) and silicic acid/silicate (Si(OH)4) and accumulate particulate material (i.e. phytoplankton) was realized in all 3 years, following short events of upwelling-favorable winds, followed by periods of relaxed winds. This was observed as phytoplankton blooms, dominated by chlorophyll in cells greater than 5 μm in diameter, that reduced the ambient nutrients to zero. These communities were located over the near-shore shelf (<100 m depth) and were dominated by diatoms. An optimal window of 3–7 days of relaxed winds, following an upwelling pulse, was required for chlorophyll accumulation. The large-celled phytoplankton that result are likely important players in coastal new production and carbon cycling.  相似文献   
109.
In this study, we propose to identify morphological and hydraulic characteristics related to overbank flows in the water level time‐series available at many gauged stations. The results obtained at 13 river stations (the catchment sizes vary from 10 to 1700 km2 with contrasted geology, land use and rainfalls regime) show that overflow mechanisms at the river‐reach scale can be systematically identified in the water level frequency distribution estimated with the peaks‐over‐threshold (POT) method. A first level (Lts1) was in the range of the incipient flooding onto the floodplain. Even if the definition of this level is variable in terms of flooded area at the reach scale, this method can be useful in providing a first estimation of the bankfull level for many gauged stations, without complex and costly field surveys. A second level (Lts2) was systematically detected on average 38 cm above the topographic flat floodplain elevation. The Lts2 inflection in the water‐level frequency distribution is assumed to reflect a composite effect of catchment hydrology and local hydraulics and channel geometry, without possibility to make a clear distinction between both processes at the moment. The local or reach scale effect would probably play an essential role in the frequency distribution as flood attenuation at catchment scale may explain the inflection Lts2 at only three sites. In light of the knowledge acquired in laboratory flumes with compound channels, most of the time Lts2 level would correspond to the level of resumption of flow both in the main channel and the floodplain. Once this method is validated in various physiographic contexts, it should apply to many hydrometric stations for both synchronic (e.g. regional analysis) and diachronic analysis (e.g. evolution over time of the bankfull discharge) to evaluate anthropic impacts on river morphology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号