首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371篇
  免费   12篇
  国内免费   11篇
测绘学   3篇
大气科学   14篇
地球物理   103篇
地质学   125篇
海洋学   65篇
天文学   60篇
自然地理   24篇
  2024年   3篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   2篇
  2018年   12篇
  2017年   9篇
  2016年   8篇
  2015年   7篇
  2014年   11篇
  2013年   21篇
  2012年   14篇
  2011年   20篇
  2010年   18篇
  2009年   23篇
  2008年   24篇
  2007年   24篇
  2006年   12篇
  2005年   16篇
  2004年   17篇
  2003年   14篇
  2002年   10篇
  2001年   7篇
  2000年   10篇
  1999年   7篇
  1998年   7篇
  1997年   6篇
  1996年   3篇
  1995年   7篇
  1994年   4篇
  1993年   9篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1982年   2篇
  1981年   6篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1977年   2篇
  1976年   5篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有394条查询结果,搜索用时 15 毫秒
151.
The redox state of the surface environment of the early Earth is still controversial, and a detailed and quantitative estimate is still lacking. We carried out in-situ analyses of major, trace, and rare-earth elements of carbonate minerals in rocks with primary sedimentary structures in shallow and deep sea-deposits, in order to eliminate secondary carbonate and contamination of detrital materials, and to estimate the redox condition of seawater through time. Based on the Ce content and anomalies of the carbonate minerals at given parameters of atmospheric CO2 content (pCO2) and Ca content of seawater, we calculated the oxygen contents of shallow and deep seawater, respectively. The results show that the oxygen content of the deep sea was low and constant until at least 1.9 Ga. The oxygen content of shallow seawater increased after 2.7 Ga, but fluctuated. It became quite high at 2.5 and 2.3 Ga, but eventually increased after the Phanerozoic. In addition, the calculation of a high pCO2 condition shows that seawater was more oxic even in the Archean than at present, suggesting a relatively low pCO2 through geologic time.Our detailed calculations from compositions of carbonate minerals in Three Gorge area, south China show a low oxygen content of seawater after the Snowball Earth until the late Ediacaran, an increase in the late Ediacaran, and a significant decrease around the Precambrian–Cambrian and Nemakit/Daldynian–Tommotian boundaries. These variations were possibly caused by global regression and dissolution of methane hydrates.  相似文献   
152.
Observations of nine oxygen- and sulfur-containing organic molecules have been made toward the cold dark clouds TMC-1 and L134N. We have confirmed the presence of para-ketene (H2C2O) in TMC-1, have for the first time observed ortho-ketene, and find a total ketene column density approximately 1 x 10(13) cm-2. Thioformaldehyde (H2CS) is easily detectable in both TMC-1 and L134N, with a column density about 5 times larger in the former source (approximately 3 x 10(13) cm-2). The fractional abundance of ketene is comparable to the predictions of ion-molecule chemistry, while that of thioformaldehyde in TMC-1 is one to two orders of magnitude greater than that expected from such models at steady state. Interstellar sulfur chemistry thus continues to be poorly understood. We set upper limits for the column densities of formic acid (HCOOH), vinyl alcohol (CH2CHOH), methyl formate (HCO2CH3), formamide (NH2CHO), methyl mercaptan (CH3SH), isothiocyanic acid (HNCS), and thioketene (H2C2S) in both sources.  相似文献   
153.
We present a classification of magnetic reconnection during two current loop coalescence, which may be quite important for the physical process of both solar flares and coronal loop heating in the solar active region. It is suggested that different kinds of the current loop coalescence processes could be identified from the soft X-ray telescope(SXT) of the Yohkoh satellite and the magnetic field data in the active region.  相似文献   
154.
Weathering rinds formed in Mesozoic sandstone and basalt cobbles buried in terrace deposits for up to 300 ka have been investigated. The aim was to determine the formation process and elemental mass balances during rind development. The ages of terraces distributed in the western part of Fukui prefecture, central Japan have been determined as 50 ka, 120 ka and 300 ka based on a tephro-stratigraphic method. Detailed investigations across the weathering rinds, consisting of microscopic observations, porosity measurements, and mineralogical and geochemical analyses using X-ray diffractometry (XRD), X-ray fluorescence (XRF), secondary X-ray analytical microscopy (SXAM), scanning electron microanalyser (SEM) and electron probe microanalysis (EPMA) have been carried out. The results revealed that the Fe concentrations in the weathering rind of a basalt cobble slightly decreased from the cobble’s surface (rim) towards the unweathered core. In contrast, in a sandstone cobble formed under the same environmental conditions over the same period of time there is an Fe-rich layer at some distance below the cobble’s surface. Elemental mass balances across the rinds were determined by using open system mass balance (τi,j) calculations and show that the Fe was precipitated as Fe-oxyhydroxides in the basalt cobbles, although Fe was slightly removed from the rims. In sandstone cobbles, on the other hand, Fe migrated along a Fe concentration gradient by diffusion and precipitated as Fe-oxyhydroxide minerals to form the weathering rinds. Presumably, precipitation was due to the relatively higher pH conditions caused by mineral dissolution within the pores, principally involving calcite, but probably also silicates including feldspar. The detailed characterization of the weathering rinds revealed the influence of lithology on the accumulation and dissolution of Fe-oxyhydroxides, causing weathering rinds with different characteristics to develop in different kinds of buried cobbles under the same conditions. Relatively large climatic changes in the study area did not cause discernable variations in the mean formation rates of the studied rinds, which were in the order of 10?8 m/a for both basalt and sandstone cobbles. These rates are 1–2 orders of magnitude slower than those reported for tropical areas elsewhere, most probably due to the lower rainfall in the studied area.  相似文献   
155.
Lherzolite xenoliths containing fluid inclusions from the Ichinomegata volcano, located on the rear-arc side of the Northeast Japan arc, may be considered as samples of the uppermost mantle above the melting region in the mantle wedge. Thus, these fluid inclusions provide valuable information on the nature of fluids present in the sub-arc mantle. The inclusions in the Ichinomegata amphibole-bearing spinel–plagioclase lherzolite xenoliths were found to be composed mainly of CO2–H2O–Cl–S fluids. At equilibrium temperature of 920 °C, the fluid inclusions preserve pressures of 0.66–0.78 GPa, which correspond to depths of 23–28 km. The molar fraction of H2O and the salinity of fluid inclusions are 0.18–0.35 and 3.71 ± 0.78 wt% NaCl equivalent, respectively. These fluid inclusions are not believed to be fluids derived directly from the subducting slab, but rather fluids exsolved from sub-arc basaltic magmas that are formed through partial melting of mantle wedge triggered by slab-derived fluids.  相似文献   
156.
The moment magnitude (M w) 9.0 Tohoku-Oki Earthquake occurred on March 11, 2011, generating an unusually large tsunami. The seismic shocks and tsunami inundation severely damaged the Fukushima Daiichi Nuclear Power Plant. Radionuclide emission due to reactor breakdown contaminated wide areas of Fukushima and its surroundings. Heavy rainfall causes runoff across surface soil, and fine soil particles are susceptible to uptake by the flowing water. The high radioactivity of grains suspended in floodwater indicates that radioactive fallout was streamed into rivers in particulate form and transported downstream under high-flow conditions. Here, we investigated the diachronic mode of 134Cs and 137Cs in central Fukushima, through which the contaminated air mass drifted and caused wet deposition of radionuclides. Stratigraphic measurements of radioactivity in sediment cores is the method employed in this study to determine the basin-wide movement of 134Cs and 137Cs, to evaluate the significance of the erosion–transportation–accumulation processes on natural decontamination in terrain characterized by steep slopes and high precipitation. Stratigraphic results illustrate the process of fluvial sediment discharge, and the massive deposition of radiocaesium suggests basin-wide movement of fallout during concentrated rainfall. Grain suspension in torrential currents is an important pathway for transportation of radionuclides from land to sea, and the appearance of hotspots on floodplains and the offshore sea floor is the consequence of erosion and transportation under seasonal heavy precipitation. Radioactive horizons occur in offshore sediment columns and thus radiocaesium discharged from the estuary will persist forever under the sea floor if no artificial disturbance occurs.  相似文献   
157.
Prediction of pore pressure change is an effective tool to properly monitor changes of groundwater flow caused by any construction work in fractured rock mass. Due to the complexity of hydrogeologic conditions in fractured rock and the scale of interest of the study domain, prediction of pore pressure changes by numerical models has not been precise enough to meet monitoring requirements. Considering these problems, a Grey model that combines the finite element method (FEM) and the artificial neural network (ANN) was developed for more precise prediction of pore pressure changes. In this model, several patterns of pore pressure changes were calculated by FEM for a simplified hydrogeologic conceptual model at a scale smaller than a representative elementary volume. The ANN model was then constructed to predict the actual pore pressure change using these FEM results as inputs. This modeling approach was adopted to predict the pore pressure changes caused by the construction of shafts of Mizunami Underground Research Laboratory (MIU), Japan. From the results obtained for MIU, it can be concluded that the proposed Grey model is a powerful tool for monitoring of pore pressure changes.  相似文献   
158.
An experimental technique to measure crater growth is presented whereby a high speed video captures profiles of a crater forming after impact obtained using a vertical laser sheet centered on the impact point. Unlike previous so called “quarter-space experiments,” where projectiles were launched along a transparent Plexiglas sheet so that growth of half a crater could be viewed, the use of the laser sheet permits viewing changes in crater shape without any physical interference to the cratering process. This technique indicates that for low velocity impacts (<300 m/s) into 220 μm glass beads that are without cohesion and where the projectile is not disrupted, craters initially grow somewhat proportionally, but that later their depths remain essentially constant while their diameters continue to expand. In addition, these experiments indicate that as the impact velocity increases, the rate of growth and the transient depth to diameter ratio at the end of ejecta excavation decreases. These last two observations are probably due to the large time of penetration of the projectile, which becomes a significant fraction of the time of crater formation. This is contrary to the expectations for the scaling rules, which assumes a point source. Very high curtain angles (>45°) are also seen, and could be due to the low friction angle of the target. Significant crater modification, which is rarely seen in “quarter-space experiments,” is also observed and appears to be controlled by the dynamic angle of repose of the target. These latter observations indicate that differences in target friction angles may need to be considered when determining near rim ejecta-mass distributions and large-scale crater modification processes on the planets.  相似文献   
159.
160.
Numerous green polished stone axes have been excavated from the Sannai-Maruyama site, one of Japan's largest archeological sites in the Jomon period (5.9–4.2 cal kyr BP). The axes are composed of weakly metamorphosed fine-grained volcaniclastic rock having a peculiar texture that includes numerous acicular actinolites growing in random directions within a quartz and albite matrix. Cobbles of Aotora stone found along the Nukabira River, Biratori town, southern Hokkaido, are the most likely raw material for these stone axes. Aotora stones have alternate bands of a soft dark-green picritic layer and a hard SiO2-rich pale-green layer. The pale-green layer has a texture similar to the stone axes. Basaltic and picritic volcanic rocks of the Sorachi-Yezo Belt occupy the area along the Shidoni River, a tributary of the Nukabira River. Volcaniclastic rocks similar in texture, mineralogy, and bulk rock compositions to the Aotora stone are exposed in the area. These rocks underwent metamorphism under the actinolite-pumpellyite facies conditions. Their protolith is submarine hyaloclastic rocks that are intercalated with laminated picrite detritus. The stone axes, pale-green layers of Aotora stone, and those of the volcaniclastic rocks of the Shidoni River area all have high SiO2 (~ 55 wt%), Cr (~ 840 μg/g), and Ni (~ 370 μg/g). The rare earth element patterns with abundant light rare earth elements and depleted heavy rare earth elements of stone axes were also consistent with the pale-green layers of the outcrop. These pale-green layers, interleaved with dark-green layers of picritic detritus, were the likely source rock of the stone axes. The high SiO2 content in the pale-green layer caused the crystallization of quartz and albite in the matrix, which resulted in high-quality raw material for making stone axes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号