首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   13篇
大气科学   4篇
地球物理   48篇
地质学   45篇
海洋学   20篇
天文学   7篇
自然地理   2篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   6篇
  2017年   4篇
  2016年   7篇
  2015年   4篇
  2014年   7篇
  2013年   7篇
  2012年   3篇
  2011年   8篇
  2010年   6篇
  2009年   5篇
  2008年   9篇
  2007年   5篇
  2006年   8篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   3篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有126条查询结果,搜索用时 78 毫秒
91.
This paper presents a rehabilitation technique developed under a design and construction scheme, termed minimal‐disturbance seismic rehabilitation. This scheme pursues enhancing the seismic performance of buildings with the intention of improving the continuity of business while minimizing obstruction of the visual and physical space of building users and the use of heavy construction equipment and hot work (welding/cutting). The developed rehabilitation technique consists of light‐weight steel elements and aims to decrease demands to beam‐ends of steel moment‐resisting frames. The behavior of the baseline model was verified through numerical analysis and proof‐of‐concept testing. Furthermore, the effectiveness of rehabilitation is studied through retrofitting a four‐story steel moment‐resisting frame originally designed with Japanese design guidelines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
92.
We report several biogeochemical parameters (dissolved inorganic carbon (DIC), total alkalinity (TA), dissolved oxygen (DO), phosphate (PO4), nitrate + nitrite (NO3 + NO2), silicate (Si(OH)4)) in a region off Otaru coast in Hokkaido, Japan on a “weekly” basis during the period of April 2002–May 2003. To better understand the long-term temporal variations of the main factors affecting CO2 flux in this coastal region and its role as a sink/source of atmospheric CO2, we constructed an algorithm of DIC and TA using other hydrographic properties. We estimated the CO2 flux across the air–sea interface by using the classical bulk method. During 1998–2003 in our study region, the estimated fCO2sea ranged about 185–335 μatm. The maximum of fCO2sea in the summer was primarily due to the change of water temperature. The minimum of fCO2sea in the early spring can be explained not only by the change of water temperature but also the change of nutrients and chlorophyll-a. To clarify the factors affecting fCO2sea (water temperature, salinity, and biological activity), we carried out a sensitivity analysis of these effects on the variation of fCO2sea. In spring, the biological effect had the largest effect for the minimum of fCO2sea (40%). In summer, the water temperature effect had the largest effect for the maximum of fCO2sea (25%). In fall, the water temperature effect had the largest effect for the minimum of fCO2sea (53%). In winter, the biological effect had the largest effect for the minimum of fCO2sea (35%).We found that our study region was a sink region of CO2 throughout a year (−0.78 mol/m2/yr). Furthermore, we estimated that the increase of fCO2sea was about 0.56 μatm/yr under equilibrium with the atmospheric CO2 content for the period 1998–2003, with the temporal changes in the variables (T, S, PO4) on fCO2sea, thus as the maximum trend of each variable on fCO2sea was 0.22 μatm/yr, and the trend of residual fCO2 including gas exchange was 0.34 μatm/yr. This result suggests that interaction among variables would affect gas exchange between air and sea effects on fCO2sea. We conclude that this study region as a representative coastal region of marginal seas of the North Pacific is special because it was measured, but there is no particular significance in comparison to any other area.  相似文献   
93.
The regional and local variations in the composition of the wolframite series associated with the ilmeniteseries and magnetite-series granitoids in the Inner Zone of SW Japan were investigated using X-ray diffraction and microprobe analyses. It is concluded that the variation in Mn/Fe ratios in the source materials (granitic magmas in most cases) is the dominant factor controlling the regional variation in the wolframite compositions, while, as exemplified by the Kaneuchi mine, Kyoto Prefecture, the wallrock chemistry and pH of ore fluids are responsible for the local variation within a single vein system. Within a fresh euhedral crystal from the mine, only slight compositional variation of less than 3 mole% MnWO4 is found in the form of oscillatory zoning. This study, combined with the fluid inclusion research, indicates that the wolframite compositions (Mn/Fe ratios) cannot be used as a geothermometer.  相似文献   
94.
Infrared spectroscopy and ion micro-probe measurements showed that the major constituent minerals of eclogites from the Kokchetav massif, which have been subducted to 180 km depths, contain significant amounts of water up to 870 ppm H2O (by weight) in omphacite, 130 ppm H2O in garnet and 740 ppm H2O in rutile. Omphacite shows three hydroxyl absorption bands at 3440–3460, 3500–3530 and 3600–3625 cm− 1, garnet has a single band at 3580–3630 cm− 1 and rutile has a single sharp band at 3280 cm− 1. The hydroxyl absorbance at these wavenumbers changes with the crystal orientation in polarized infrared radiation, indicating that the water is structurally incorporated in these minerals. The water contents in omphacite and garnet increase systematically with the metamorphic pressure of the host eclogites. The partitioning coefficient of the water content between coexisting garnet and omphacite is similar in different eclogites, DGrt/Omp0.1–0.2, but decreases slightly at high pressure. Based on the mineral proportions of the eclogites, we estimate bulk-rock water content in the eclogites ranging from 3070 to 300 ppm H2O (by weight). Although hydrous minerals are absent in the diamond-grade eclogite (60 kbar and 1000 °C), trace amounts of water are incorporated in the nominally anhydrous minerals such as omphacite and garnet. The presence of significant water in these minerals implies that the subducting oceanic crust can transport considerable amounts of water into the deep upper mantle beyond the stability of hydrous minerals. Such water may be stored in the deep upper mantle and have an important influence on dynamics in the Earth's interior.  相似文献   
95.
We present oxygen and carbon isotope ratios and the morphological structure of the cultured freshwater pearl mussel (Hyriopsis sp., Unionidae) shell and pearl. The number of first-order fluctuations of δ18O of the outer shell layer along the maximum growth axis was consistent with the number of cultured years. The dominant factor controlling annual δ18O fluctuations was water temperature with a minor contribution from the variation in δ18O of ambient water, especially during the rainy season. The δ13C values were approximately constant throughout the life of the mussel, suggesting that the contributions of body size to δ13C of the shell were minor. We observed nine distinct disturbance rings on the outer surface of the shell. Five rings coincided with the five winter peaks of the δ18O profile, indicating winter growth cessation below approximately 10°C, probably because of either inactive growth at low water temperatures or reproduction. Summer disturbance rings were not observed in all years. Moreover, some summer rings showed discontinuity in the inner structure. These findings suggest that summer growth cessation may be caused by occasional events such as heavy rains, as the decrease of dissolved oxygen concentration. The δ18O profile and shell structures indicated that shell aragonite was precipitated at close to equilibrium conditions with respect to the oxygen isotope composition of the ambient water. Hyriopsis sp. shells can potentially be used for reconstruction of past hydrologic conditions. The δ18O of a pearl indicated that calcification occurred over a temperature range of at least 13–23°C. The optimal temperature for pearl calcification in this species is lower than that for marine pearl calcification.  相似文献   
96.
To reduce floor acceleration of base‐isolated structures under earthquakes, a tuned mass damper (TMD) system installed on the roof is studied. The optimal tuning parameters of the TMD are analyzed for linear base isolation under a generalized ground motion, and the performance of the TMD is validated using a suite of recorded ground motions. The simulation shows that a TMD tuned to the second mode of a base‐isolated structure reduces roof acceleration more effectively than a TMD tuned to the first mode. The reduction ratio, defined as the maximum roof acceleration with the TMD relative to that without the TMD, is approximately 0.9 with the second‐mode TMD. The higher effectiveness of the second‐mode TMD relative to the first‐mode TMD is attributed primarily to the unique characteristics of base isolation, ie, the relatively long first‐mode period and high base damping. The modal acceleration of the second mode is close to or even higher than that of the first mode in base‐isolated structures. The larger TMD mass ratio and lower modal damping ratio of the second‐mode TMD compared to the first‐mode TMD increases its effect on modal acceleration reduction. The reduction ratio with the second‐mode TMD improves to 0.8 for bilinear base isolation. Because of the detuning effect caused by the change in the first‐mode period in bilinear isolation, the first‐mode TMD is ineffective in reducing roof acceleration. Additionally, the displacement experienced by the second‐mode TMD is considerably smaller than that of the first‐mode TMD, thereby reducing the installation space for the TMD.  相似文献   
97.
A test environment to evaluate the seismic performance of gusset plate connections intended for steel braced frames is proposed. The developed test method combines the substructuring techniques with finite element analysis methods in an on‐line hybrid scheme. Numerical substructure analysis is conducted on bracing members, while bracing connections are treated as experimental substructures. A force‐displacement combined control imposed with the aid of 2 jacks ensures physical continuity between the analysis and test. The rotational behavior of gusset plate connections subjected to large inelasticity and varying axial loading until fracture is investigated. Two gusset plate details were designed and tested to verify the efficiency of the proposed method. The test method is rational, and smooth operation is achieved. The test results revealed the advantage of the developed on‐line hybrid test method in exploring the ultimate capacity of bracing connections.  相似文献   
98.
This historical note reports on the early days of the development of an experimental method called “hybrid simulation.” As background, the seeds of this concept, initiated in the early 1970s by Japanese researchers, are presented first, followed by initial efforts (regarded as Stage I) to realize the concept of hybrid simulation and its first applications to explore the seismic performance of structures. The initial research in this now-seminal field of earthquake engineering began in the early 1970s by Koichi Takanashi and his coworkers at the Institute of Industrial Science, the University of Tokyo. Their highly notable efforts in laying the groundwork for hybrid simulation occurred in the mid-1970s through the early 1980s by Takanashi (for steel structures) and Tsuneo Okada (for RC structures). These two men and their coworkers first applied hybrid simulation to explore the seismic behavior, performance, and design of various types of building structures. In Stage I, this method was called “the on-line computer-controlled test” or “pseudo dynamic test” because the unique feature of the method was the combined test and simulation and the intentional slow loading in the test. Extension of the scope and application of hybrid simulation occurred largely between the early 1980s and the early 1990s (regarded as Stage II) in conjunction with the United States–Japan joint research project. A few notable efforts made around that period are touched upon briefly, including error propagation and suppression in multi-degree-of-freedom hybrid simulation, application of the substructure methodology to hybrid simulation, and real-time hybrid simulation.  相似文献   
99.
A series of E‐Defense shaking table tests are conducted on a large‐scale test specimen that represents a high‐rise steel building. Two types of connections featuring the connection details commonly used in 1970s, in the early days of high‐rise construction in Japan, are adopted: the field‐welded connection consisting of welded unreinforced flanges and a bolted web type, and the shop‐welded connection in which the flanges and web are all‐welded to the column flange in the shop. To examine the seismic capacity of a total of 24 beam‐to‐column connections of the specimen, particularly when it is subjected to long‐period ground motion characterized not so much by large amplitude as by very many cycles of repeated loading, the test specimen is shaken repeatedly until the connections fractured. The test results indicate that a few of the field‐welded connections fractured from the bottom flange weld boundary in a relatively small cumulative rotation primarily due to the difficulties in ensuring the welding and inspection performance in the actual field welding. The shop‐welded connections are able to sustain many cycles of plastic rotation, with an averaged cumulative plastic rotation of 0.86 rad. Two shop‐welded connections exhibit ductile fractures but only after experiencing many cycles. The presence of RC floor slabs promotes the strain concentration at the toe of the weld access hole in the bottom flange by at least twice compared with the case without the slab, which had resulted in a decrease in the cumulative plastic rotation by about 50%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
100.
A series of full‐scale shaking table tests are conducted using the E‐Defense shaking table facility on a base‐isolated four‐story RC hospital structure. A variety of furniture items, medical appliances, and service utilities are placed on the hospital specimen in as realistic a manner as possible. Four ground motions are adopted, including recorded near‐fault ground motions and synthesized long‐period, long‐duration ground motions. The test results show that the base‐isolated system performed very effectively against near‐fault ground motions due to significant reduction in the floor acceleration response, and operability and functionality of the hospital service is improved significantly as compared with the case observed for the corresponding base‐fixed system. Against the long‐period ground motion, however, the hospital service is difficult to maintain, primarily because of the significant motion of furniture items and medical appliances supported by casters. Resonance accentuated large displacements and velocities on the floors of the base‐isolated system, which causes such furniture items and medical appliances to slide, sometimes more than 3 m, resulting in occasional collision with other furnitures or against the surrounding partition walls. It is notable that a key to maintaining the function of the medical facilities is to securely lock the casters of furniture and medical appliances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号