首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   1篇
测绘学   2篇
大气科学   1篇
地球物理   14篇
地质学   8篇
海洋学   7篇
天文学   53篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2018年   3篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2003年   1篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   6篇
  1982年   4篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
21.
T. Takakura 《Solar physics》1979,61(1):161-186
A simulation of normal type III radio bursts has been made in a whole frequency range of about 200 MHz to 30 kHz by the usage of the semi-analytical method as developed in previous papers for the plasma waves excited by a cloud of fast electrons. Three-dimensional plasma waves are computed, though the velocities of fast electrons are assumed to be one-dimensional. Many basic problems about type III radio bursts and associated solar electrons have been solved showing the following striking or unexpected results.Induced scattering of plasma waves, by thermal ions, into the plasma waves with opposite wave vectors is efficient even for a solar electron cloud of rather low number density. Therefore, the second harmonic radio emission as attributed to the coalescence of two plasma waves predominates in a whole range from meter waves to km waves. Fundamental radio emission as ascribed to the scattering of plasma waves by thermal ions is negligibly small almost in the whole range. On the other hand, third harmonic radio emission can be strong enough to be observed in a limited frequency range.If, however, the time integral of electron flux is, for example, 2 × 1013 cm–2 (>5 keV) or more at the height of 4.3 × 1010 cm ( p = 40 MHz) above the photosphere, the fundamental may be comparable with or greater than the second harmonic, but an effective area of cross-section of the electron beam is required to be very small, 1017 cm2 or less, and hence much larger sizes of the observed radio sources must be attributed to the scattering alone of radio waves.The radio flux density expected at the Earth for the second harmonic can increase with decreasing frequencies giving high flux densities at low frequencies as observed, if x-dependence of the cross-sectional area of the electron beam is x 1.5 or less instead of x 2, at least at x 2 × 1012 cm.The second harmonic radio waves are emitted predominantly into forward direction at first, but the direction of emission may reverse a few times in a course of a single burst showing a greater backward emission at the low frequencies.In a standard low frequency model, a total number of solar electrons above 18 keV arriving at the Earth orbit reduces to 12% of the initial value due mainly to the collisional decay of plasma waves before the waves are reabsorbed by the beam electrons arriving later. However, no deceleration of the apparent velocity of exciter appears. A change in the apparent velocity, if any, results from a change in growth rate of the plasma waves instead of the deceleration of individual electrons.Near the Earth, the peak of second harmonic radio flux as emitted from the local plasma appears well after the passage of a whole solar electron cloud through this layer. This is ascribed to the secondary and the third plasma waves as caused in non-resonant regions by the induced scattering of primary plasma waves in a resonant region.  相似文献   
22.
Climatological water-mass structures were identified in the Arctic Ocean using the geochemical dataset in the Hydrochemical Atlas of the Arctic Ocean (HAAC) as well as data on a geochemically conserved parameter, PO4*, based on phosphate and dissolved oxygen. In the upper ocean above a depth of 500 m, the HAAC was found to reliably depict the boundary between Pacific-Origin Water (P-Water) and Atlantic-Origin Water (A-Water), which is aligned 135°E–45°W near the surface but rotates counterclockwise with depth. Thus, the Arctic and Atlantic oceans exchange high-silicate P-Water and low-silicate A-Water. The PO4* field in the lower ocean below a depth of 1500 m was analyzed statistically, and the results indicated that the Eurasian Basin receives low-PO4* Nordic Seas Deep Water, which flows along the bottom from the Greenland Sea. The routes from the upper ocean to the lower ocean were determined. Only the southern portion of the Canada Basin, which receives water from the Chukchi and Beaufort Seas, has high PO4* levels; the rest of the Amerasian Basin receives low-PO4* water from the Laptev Sea and/or the Barents Sea. The Eurasian Basin receives moderate levels of PO4* from the Fram Strait and from the intermediate layer. The intermediate-layer water gradually travels up from the lower ocean and returns to the Atlantic, entraining the subsurface portion. It is likely that high-PO4* water occasionally flows down from the upper ocean along Greenland, making the Eurasian Basin heterogeneous.  相似文献   
23.
Coastal erosion is becoming an increasingly serious consequence of climate change. This study demonstrates the effects of coastal erosion on landslide activity while considering the amount of erosion and changes in pore water pressure. To determine the factors related to landslide slip generation, we specifically measured the displacement, deformation, pore water pressure, and amount of erosion with high temporal resolution (1 s–1 h) for a coastal landslide in Hokkaido, north-eastern Japan, for 7 months. It has been determined that landslides occur simultaneously with high pore water pressure. Toe erosion events also occurred several times, while the landslide exhibited major displacement. Because toe erosion and the increase in pore water pressure occurred simultaneously, we tried to determine which of the two contributed majorly to the landslide displacement by conducting a stability analysis that incorporates the effects of the two factors. From the actual observed data, toe erosion and the increase in pore water pressure had comparable effects on the destabilization of the studied landslide. Specifically, the time series for the safety factor shows that the landslide in the case with toe erosion was destabilized more than that in the case with no erosion, with a difference of more than 5% in the safety factor. The model with toe erosion provided a better explanation for the landslide displacement. Furthermore, the inclination data suggested that erosion took place at least 1 month before the landslide displacement. This implied that coastal erosion played a role in the preparation and ongoing displacement of the coastal landslide. Inland landslides with toes that are subject to undercutting due to river incision or artificial construction have geomorphological settings that are similar to those of the studied landslide. The knowledge obtained here can contribute to the understanding of destabilization mechanisms and terrain changes related to such landslides. © 2020 John Wiley & Sons, Ltd.  相似文献   
24.
T. Takakura 《Solar physics》1982,75(1-2):277-292
It is demonstrated by a numerical simulation that both the whistler waves and plasma waves are excited by a common solar electron beam. The excitation of the whistler waves is ascribed to the loss-cone distribution which arises at a later phase of the passage of the beam at a given height due to a velocity dispersion in the electron beam with a finite length. It is highly probable that the fundamental of type III bursts are caused by the coalescence of the whistler waves and the plasma waves excited by a common electron beam, although the plasma waves must suffer induce scatterings by thermal ions to have small wave numbers before the coalescence to occur.  相似文献   
25.
T. Takakura 《Solar physics》1982,113(1-2):221-228
Evolution of a filamentary magnetic flux tube emerging from the photosphere is investigated in the assumption that the magnetic field is force-free and unchanged during the evolution.If a characteristic radius of the flux tube is 3 km or less setting the field to 1000G, the temperature increases at first due to Joule heating up to about one million degree keeping the plasma density almost constant, and then the density decreases down to a critical value at which a current instability may occur. Thus, a.strong field-aligned electric field of 200 million volts or more is expected to be produced during the following anomalous Ohmic decay of the magnetic field as already shown by a numerical simulation.  相似文献   
26.
It has been controversial whether the flare-associated hard X-ray bursts are thermal emission or non-thermal emission. Another controversial point is whether or not the associated microwave impulsive burst originates from the common electrons emitting the hard X-ray burst.It is shown in this paper that both the thermal and non-thermal bremsstrahlung should be taken into account in the quantitative explanation of the time characteristics of the hard X-ray bursts observed so far in the photon energy range of 10–150 keV. It is emphasized that the non-thermal electrons emitting the hard X-rays and those emitting the microwave impulsive burst are not common. The model is as follows, which is also consistent with the radio observations.At the explosive phase of the flare a hot coronal condensation is made, its temperature is generally 107 to 108K, the number density is about 1010 cm–3 and the total volume is of the order of 1029 cm3. A small fraction, 10–3–10–4, of the thermal electrons is accelerated to have power law distribution. Both the non-thermal and thermal electrons in the sporadic condensation contribute to the X-ray bursts above 10 keV as the bremsstrahlung. Fast decay of the harder X-rays (say, above 20 keV) for a few minutes is attributed to the decay of non-thermal electrons due to collisions with thermal electrons in the hot condensation. Slower decay of the softer X-rays including around 10 keV is attributed to the contribution of thermal component.The summary of this paper was presented at the Symposium on Solar Flares and Space Research, COSPAR, Tokyo, May, 1968.  相似文献   
27.
The gyro-synchrotron emission from a model source with a non-uniform magnetic field is computed taking into account the self absorption. This model seems adequate not only to interpret the radio spectrum and its time variation of microwave impulsive bursts but also to solve the discrepancy between the numbers of non-thermal electrons emitting radio burst and those emitting hard X-ray burst.The decrease of flux of radio burst with decreasing frequency at low microwave frequencies is due to the self absorption and/or the thermal gyro-absorption. In this frequency range, the radio source is optically thick even at weak microwave bursts. The weakness of the bursts may be rather due to the small size of the radio source and/or the weakness of the magnetic field than the small number density of the non-thermal electrons.The time variation of the flux of radio burst may be mainly attributed to the variation of source size in a horizontal direction ( direction) instead of the variation of the number density of non-thermal electrons itself, implying that the acceleration region progressively moves in the horizontal direction leaving the non-thermal electrons behind during the increasing phase of the radio burst.  相似文献   
28.
Abstract: Ore specimens collected by the late Professor Takeo Watanabe from the Hol Kol and the Tul Mi Chung deposits, Suan mining district, Korean peninsula, were examined. In addition, measurements of sulfur isotopic ratio of ores and preliminary fluid inclusion microthermometry were carried out. Ores from the New orebody of the Hol Kol deposit consist mainly of bornite, wittichenite and chalcopyrite presently, which exhibit lamellae intergrowth texture, associated with native bismuth and electrum. Bismuthian bornite solid solution is considered to be a principal initial phases, while native bismuth was nucleated as molten bismuth melt initially. The occurrence of cubanite, miharaite, carrollite, siegenite, hessite and geikielite are recognized from the New orebody. Ores from the Eastern orebody of the Hol Kol deposit consist chiefly of chalcopyrite, occasionally associated with trace amounts of pyrrhotite, pyrite, bismuthinite and rare tellurobismuthite, while an ore specimen from the Western orebody consists mainly of sphalerite associated with chalcopyrite, pyrite and galena. Ores from the Tul Mi Chung deposit consist mainly of chalcopyrite and pyrite, occasionally associated with magnetite, sphalerite, galena and rare molybdenite. Some portions of magnetite are revealed to be silician magnetite. Sulfur fugacity is supposed to be below the stability field of bismuthinite in the New orebody. A reducing condition is suggested by the occurrence of geikielite without Fe3+ content. The sulfur and oxygen fugacities for the Eastern and Western orebodies of the Hol Kol deposit and for the Tul Mi Chung deposit were higher than the New orebody of the Hol Kol deposit. On the other hand, the Suan granite (porphyritic granodiorite) and the Chil Sing Dai granite (biotite granite porphyry) from the Hol Kol area can be classified as weakly magnetic magnetite‐series. Polyphase fluid inclusions are observed in gangue diopside associated with Cu ore of two specimens. The dissolution temperatures of daughter crystals are 394±26°C and 442±45°C, while the disappearing temperatures of vapor bubble were 475±25°C and > 500°C. Highly saline fluids were responsible for the mineralization at the Hol Kol deposit. The δ34S values of ore sulfides of the Hol Kol and the Tul Mi Chung deposit range from +11. 5% to +16. 1%, having anomalous lower values mainly from the Tul Mi Chung deposit. Such anomalous lower 634S values can be caused by isotopic fractionation against oxidized sulfur species. The δ34S value of bulk sulfur in the ore solutions responsible for the Hol Kol and the Tul Mi Chung deposit is estimated to be +13.5±2.5‰.  相似文献   
29.
An intense solar X-ray burst occurred on April 1, 1981. X-ray images of this gradual hard X-ray burst were observed with the hard X-ray telescope aboard the Hinotori satellite for the initial ten minutes of rise and maximum phases of the burst. The hard X-ray images (13–29 keV) look like a large loop without considerable time variation of an elongated main source during the whole observation period. The main X-ray source seems to lie along a ridge of a long coronal arcade 2 × 104 km above a neutral line, while a tangue-like sub-source may be another large coronal loop although the whole structure of the X-ray source looks like a large semi-circular loop. Both nonthermal and hot thermal (3–4 × 107 K) electrons are contributing to the source image. The ratio of these components changed in a wide range from 2.3 to 0.4 during the observation, while the image was rather steady. It suggests that both heating and accelerations of electrons are occurring simultaneously in a common source. Energetic electrons of 15–30 keV would be collisionally trapped in the coronal magnetic loops with density of the order of 1011 cm–3.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号