首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   6篇
  国内免费   2篇
大气科学   3篇
地球物理   36篇
地质学   72篇
海洋学   33篇
天文学   59篇
自然地理   3篇
  2024年   2篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   11篇
  2013年   4篇
  2012年   7篇
  2011年   6篇
  2010年   9篇
  2009年   7篇
  2008年   10篇
  2007年   4篇
  2006年   4篇
  2005年   7篇
  2004年   9篇
  2003年   10篇
  2002年   8篇
  2001年   9篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1992年   1篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   1篇
  1980年   6篇
  1979年   2篇
  1974年   1篇
  1972年   3篇
  1971年   1篇
排序方式: 共有206条查询结果,搜索用时 31 毫秒
191.
Flow structure in the Australian–Antarctic basin is investigated using an eddy-resolving general ocean circulation model and validated with iceberg and middepth float trajectories. A cyclonic circulation system between the Antarctic Circumpolar Current and Antarctic Slope Current consists of a large-scale gyre in the west (80–110° E) and a series of eddies in the east (120–150° E). The western gyre has an annual mean westward transport of 22 Sv in the southern limb. Extending west through the Princess Elizabeth Trough, 5 Sv of the gyre recirculates off Prydz Bay and joins the western boundary current off the Kerguelen Plateau. Iceberg trajectories from QuickScat and ERS-1/2 support this recirculation and the overall structure of the Antarctic Slope Current against isobath in the model. Argo float trajectories also reveal a consistent structure of the deep westward slope current. This study indicates the presence of a large cyclonic circulation in this basin, which is comparable to the Weddell and Ross gyres.  相似文献   
192.
Sediment trap experiments were carried out three times from 1999 to 2000, in the western part of the Seto Inland Sea (Suo-Sound), Japan. We investigated both the particulate flux and the composition of chemical substances in the sediment trap samples. Based on the results, we discuss the origin of particulate organic carbon (POC) collected by the sediment traps in a coastal area. Moreover, we purposed to estimate the flux of the portion of the POC that is derived from phytoplankton photosynthesis. The fluxes of POC varied between 677 and 3424 mgC m(-2) d(-1). Significant positive correlations between POC and aluminum (Al) fluxes suggested that these components show almost the same behaviour. The mean value of the Al flux was about eight times higher than that of Al burial rates on the sediment surface. Therefore, it seems that the POC flux observed with the sediment traps was considerably overestimated. Moreover, judging from the fact that Al is a typical terriginous element, it seems that most of the POC collected in the sediment traps derived from the re-suspended surface sediment or sediment transported laterally from shallow flanks such as intertidal mudflats. The fluxes of chlorophyll a (Chl a) were independent of the POC fluxes, and a relatively consistent correlation was found between Chl a abundance in the water column and the Chl a flux. Moreover, surface sediment Chl a content was approximately 100 times lower than that of suspended matter. Therefore, resuspension and terriginous contributions to Chl a collected in sediment traps are likely to be negligible. The POC content in the trap samples varied between 22.4 and 70.7 mg g(-1) dry weight. The variations of POC contents were positively correlated with the Chl a contents: POC(mg g(-1))=76.5 x Chl a(mg g(-1)) + 26.0 (r=0.95, p<0.01, n=9). This result shows that POC contents strongly corresponded with phytoplankton and their debris. It was also considered that the fraction of POC derived from phytoplankton primary production could be estimated as Chl a content times a certain factor. In this study, we estimated the flux of the portion of the POC originating from phytoplankton production by multiplying the Chl a fluxes by 76.5 (the mean POC:Chl a ratio in the trap samples). These values varied between 308 and 758 mgC m(-2) d(-1), and accounted for 35.1+/-21.2% of total POC flux. Although the amount of POC that originates from phytoplankton photosynthesis was a small portion of total POC flux, it seems to be a large portion of potential primary production in the water column.  相似文献   
193.
In the previous paper (Nagashima et al., 1982), we have reported the yearly averaged modulation of galactic cosmic ray anisotropy in the heliomagnetosphere. In the present paper, we analyze the seasonal (annual) dependence of the modulation, using the frequency modulation method. The seasonal variation of the sidereal daily variation produced from the anisotropy is resolved into variations with proper sideband frequencies, such as solar and anti-sidereal variations. These side-band variations are predominant in the rigidity region of 102 ~' 103 GV and show the following characteristics.(1) Being similar to the average sidereal variation, they are strongly dependent on the polarity state (‘positive’ or ‘negative’) of the heliomagnetosphere.(2) The side-band variations with frequencies lower than the sidereal frequency (366 cycle/year) generally predominate over those with higher frequencies. The most predominant variations are produced from the component of the uni-directional anisotropy projected to the Earth's rotation axis and could be observed as the solar and anti-sidereal diurnal variations.(3) If the flat neutral sheet of the heliomagnetosphere is replaced with the wavy neutral sheet, side-band variations in the positive state tend to diminish with the increase of the heliolatitudinal extent of the wavy neutral sheet, while those in the negative state almost retain their magnitude.(4) These variations depend also on the observation periods when the Earth is located either in the “toward” field or in the “away” field. This T-A dependence changes with the transition from the positive state to the negative and increases with the increase of the heliolatitudinal extent of the wavy neutral sheet. The most remarkable T-A dependence is observed in solar diurnal variation arising from the component of the unidirectional anisotropy projected to the Earth's rotation axis and can be used for the determination of the direction of the anisotropy.  相似文献   
194.
The existence of the 22-year modulation of cosmic ray intensity is pointed out, using data of the ion chamber at Huancayo and the neutron monitors at Ottawa and Deep River for about four solar cycles. The modulation consists of two discrete states (high and low intensities), corresponding respectively to those of the polarity of the polar magnetic field of the Sun. This can be interpreted on the basis of the following hypothesis; when the polar magnetic field of the Sun is nearly parallel to the galactic magnetic field, they could easily connect with each other, so that galactic cosmic rays could intrude more easily into the heliomagnetosphere along the magnetic line of force, as compared with those in the anti-parallel state of the magnetic fields. The observed intensity difference between two states is about 4.3 ± 0.2% for neutron monitor (Pc = 1.5GV). The abnormal increase in proton (0.28–0.42 GV) and electron (0.41-3.24 GV) fluxes in the 20th solar cycle and the sudden appearance of anomalous components (He+, etc.) since 1972 can be also explained on the basis of the present hypothesis. The transition between the two states has a time lag behind the polarity reversal, depending on the cosmic ray rigidity, such as about 1 year for the neutron monitor (Pc = 1.5 GV) and about 3.5 years for low rigidity components (P < 1 GV). These time lags could be explained on the basis of the generalized Simpson's coasting solar wind model and the general diffusion-convection theory on some assumptions.  相似文献   
195.
Two pumpellyites with the general formula W 8 X 4 Y 8 Z 12O56-n (OH) n were studied using 57Fe Mössbauer spectroscopic and X-ray Rietveld methods to investigate the relationship between the crystal chemical behavior of iron and structural change. The samples are ferrian pumpellyite-(Al) collected from Mitsu and Kouragahana, Shimane Peninsula, Japan. Rietveld refinements gave Fe(X):Fe(Y) ratios (%) of 41.5(4):58.5(4) for the Mitsu pumpellyite and 46(1):54(1) for the Kouragahana pumpellyite, where Fe(X) and Fe(Y) represent Fe content at the X and Y sites, respectively. The Mössbauer spectra consisted of two Fe2+ and two Fe3+ doublets for the Mitsu pumpellyite, and one Fe2+ and two Fe3+ doublets for the Kouragahana pumpellyite. In terms of the area ratios of the Mössbauer doublets and the Fe(X):Fe(Y) ratios determined by the Rietveld refinements, Fe2+(X):Fe3+(X):Fe3+(Y) ratios are determined to be 22:14:64 for the Mitsu pumpellyite and 27:8:65 for the Kouragahana pumpellyite. By applying the Fe2+:Fe3+-ratio determined by the Mössbauer analysis and the site occupancies of Fe at the X and Y sites given by the Rietveld method together with chemical analysis, the resulting formula of the Mitsu and Kouragahana pumpellyites are established as Ca8(Fe 0.88 2+ Mg0.68Fe 0.77 3+ Al1.66)Σ3.99(Al5.67Fe 2.34 3+ )Σ8.01Si12O42.41(OH)13.59 and Ca8(Mg1.24Fe 0.65 2+ Fe 0.46 3+ Al1.66)Σ4.01(Al6.71Fe 1.29 3+ )Σ8.00Si12O42.14(OH)13.86, respectively. Mean Y–O distances and volumes of the YO6 octahedra increase with increasing mean ionic radii, i.e., the Fe3+→Al substitution at the Y site. However, change of the sizes of XO6 octahedra against the mean ionic radii at the X site is not distinct, and tends to depend on the volume change of the YO6 octahedra. Thus, the geometrical change of the YO6 octahedra with Fe3+→Al substitution at the Y site is essential for the structural changes of pumpellyite. The expansion of the YO6 octahedra by the ionic substitution of Fe3+ for Al causes gradual change of the octahedra to more symmetrical and regular forms.  相似文献   
196.
Environmental degradation, including shallowing, deterioration of aquatic habitat and water pollution, has arisen from the inflow of fine sediment to Lake Takkobu in northern Japan. The lake has experienced gradual environmental degradation due to agricultural development, which has introduced both fine sediment and sediment-associated nutrients into the lake. We have reconstructed the history of sediment yield to Lake Takkobu in Kushiro Mire over the last 300 years and have examined trends with reference to land-use development. Fifteen lake sediment core samples were obtained, and various physical variables of lake sediments were analyzed and dated using 137Cs and tephrochronology. The physical variables showed that all points contained mainly silt, except for two points close to the river mouths, where the mean diameter was < 35 μm. The peaks were defined as a “signal” when the physical variables were synchronous in a profile. These were created by floods and engineering works constructing drainage systems. The signal of canal construction in 1898 was detected in all core points. Lake Takkobu core samples contained two tephra layers. From the refractive indices of dehydrated glasses, the lower tephra layer was identified as Ko-c2 (1694) and the upper tephra layer as Ta-a (1739). A clear peak in the 137Cs concentration was detected at all the sampling points, except for the site close to the Takkobu River. This site showed two peaks in the 137Cs concentration, which was attributed to perturbation from flood events and a drainage project. The maximum 137Cs concentration was identified as the sediment surface from 1963, enveloped by the 1962 and 1964 signals. The sediment yield averaged over the last 300 years for Lake Takkobu was reconstructed for four periods using the signal, tephra and 137Cs as marker layers. The sediment yield under the natural erosion condition for the first two periods was 226 tons/year from 1694 to 1739 and 196 tons/year from 1739 to 1898. The development of the Takkobu watershed started in 1880s with partial deforestation and channelization in 1898, 1959, and 1962 leading to an increased sedimentation yield of 1016 tons/year from 1898 to 1963. Continued deforestation, channelization works in 1964, road construction in 1980–1990s, as well as agriculture development caused a further increase to 1354 tons/year from 1963 to 2004. Compared to the averaged natural sedimentation yield of 206 tons/year until 1898, initial land-use development in a catchment accelerated lake sedimentation, indicated by the 5-fold sediment yield. With increasing agricultural development since 1960s, sedimentation yields were highest for 1963–2004; a 7-fold increase compared with pre-impact conditions. To reduce sediment yield, riparian buffers along the rivers should be preserved or rebuilt, and sluices may function effectively during short-term periods of flooding. Environmental management policy and laws restricting uncontrolled and inappropriate land-use might help in addition to ensure longer-term environmental health by reducing the sedimentation rate.  相似文献   
197.
Twenty-eight major, minor and trace elements in nine new rock reference samples of Geological Survey of Japan (GSJ), JA-2, JA-3 JB-1a, JG-1a, JG-2, JG-3, JF-1, JF-2 and JP-1 have been determined using atomic absorption spectrometry, flame emission spectrometry and wet chemical techniques.  相似文献   
198.
Cosmochemists have relied on CI carbonaceous chondrites as proxies for chemical composition of the non-volatile elements in the solar system because these meteorites are fine-grained, chemically homogeneous, and have well-determined bulk compositions that agree with that of the solar photosphere, within uncertainties. Here we report the discovery of a calcium-aluminum-rich inclusion (CAI) in the Ivuna CI chondrite. CAIs are chemically highly fractionated compared to CI composition, consisting of refractory elements and having textures that either reflect condensation from nebular gas or melting in a nebular environment. The CAI we found is a compact type A CAI with typical 16O-rich oxygen. However, it shows no evidence of 26Al, which was present when most CAIs formed. Finding a CAI in a CI chondrite raises serious questions about whether CI chondrites are a reliable proxy for the bulk composition of the solar system. Too much CAI material would show up as mismatches between the CI composition and the composition of the solar photosphere. Although small amounts of refractory material have previously been identified in CI chondrites, this material is not abundant enough to significantly perturb the bulk compositions of CI chondrites. The agreement between the composition of the solar photosphere and CI chondrites allows no more than ~0.5 atom% of CAI-like material to have been added to CI chondrites. As the compositions of CI chondrites, carbonaceous asteroids, and the solar photosphere are better determined, we will be able to reduce the uncertainties in our estimates of the composition of the solar system.  相似文献   
199.
Zinner and Göpel ( 1992 , 2002 ) found clear evidence for the former presence of 26Al in the H4 chondrites Ste. Marguerite and Forest Vale. They assumed that the 26Al‐26Mg systematics of these chondrites date “metamorphic cooling of the H4 parent body.” Plagioclase in these chondrites can have very high Al/Mg ratios and low Mg concentrations, making these ion probe analyses susceptible to ratio bias, which is inversely proportional to the number of counts of the denominator isotope (Ogliore et al. 2011 ). Zinner and Göpel ( 2002 ) used the mean of the ratios to calculate the isotope ratios, which exacerbates this problem. We analyzed the Al/Mg ratios and Mg isotopic compositions of plagioclase grains in thin sections of Ste. Marguerite, Forest Vale, Beaver Creek, and Sena to evaluate the possible influence of ratio bias on the published initial 26Al/27Al ratios for these meteorites. We calculated the isotope ratios using total counts, a less biased method of calculating isotope ratios. The results from our analyses are consistent with those from Zinner and Göpel ( 2002 ), indicating that ratio bias does not significantly affect 26Al‐26Mg results for plagioclase in these chondrites. Ste. Marguerite has a clear isochron with an initial 26Al/27Al ratio indicating that it cooled to below 450 °C 5.2 ± 0.2 Myr after CAIs. The isochrons for Forest Vale and Beaver Creek also show clear evidence that 26Al was alive when they cooled, but the initial 26Al/27Al ratios are not well constrained. Sena does not show evidence that 26Al was alive when it cooled to below the Al‐Mg closure temperature. Given that metallographic cooling rates for Ste. Marguerite, Forest Vale, and Beaver Creek are atypical (>5000 °C/Myr at 500 °C) compared with most H4s, including Sena, which have cooling rates of 10–50 °C/Myr at 500 °C (Scott et al. 2014 ), we conclude that the Al‐Mg systematics for Ste. Marguerite, Forest Vale, and Beaver Creek are the result of impact excavation of these chondrites and cooling at the surface of the parent body, instead of undisturbed cooling at depth in the H chondrite parent body, like many have assumed.  相似文献   
200.
The mineralogy and mineral chemistry of Itokawa dust particles captured during the first and second touchdowns on the MUSES‐C Regio were characterized by synchrotron‐radiation X‐ray diffraction and field‐emission electron microprobe analysis. Olivine and low‐ and high‐Ca pyroxene, plagioclase, and merrillite compositions of the first‐touchdown particles are similar to those of the second‐touchdown particles. The two touchdown sites are separated by approximately 100 meters and therefore the similarity suggests that MUSES‐C Regio is covered with dust particles of uniform mineral chemistry of LL chondrites. Quantitative compositional properties of 48 dust particles, including both first‐ and second‐touchdown samples, indicate that dust particles of MUSES‐C Regio have experienced prolonged thermal metamorphism, but they are not fully equilibrated in terms of chemical composition. This suggests that MUSES‐C particles were heated in a single asteroid at different temperatures. During slow cooling from a peak temperature of approximately 800 °C, chemical compositions of plagioclase and K‐feldspar seem to have been modified: Ab and Or contents changed during cooling, but An did not. This compositional modification is reproduced by a numerical simulation that modeled the cooling process of a 50 km sized Itokawa parent asteroid. After cooling, some particles have been heavily impacted and heated, which resulted in heterogeneous distributions of Na and K within plagioclase crystals. Impact‐induced chemical modification of plagioclase was verified by a comparison to a shock vein in the Kilabo LL6 ordinary chondrite where Na‐K distributions of plagioclase have been disturbed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号