首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   3篇
  国内免费   1篇
测绘学   3篇
大气科学   6篇
地球物理   24篇
地质学   42篇
海洋学   4篇
天文学   67篇
自然地理   8篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   11篇
  2012年   6篇
  2011年   5篇
  2010年   1篇
  2009年   9篇
  2008年   5篇
  2007年   10篇
  2006年   7篇
  2005年   12篇
  2004年   15篇
  2003年   9篇
  2002年   14篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
排序方式: 共有154条查询结果,搜索用时 0 毫秒
71.
72.
73.
74.
Stream chemistry is often used to infer catchment‐scale biogeochemical processes. However, biogeochemical cycling in the near‐stream zone or hydrologically connected areas may exert a stronger influence on stream chemistry compared with cycling processes occurring in more distal parts of the catchment, particularly in dry seasons and in dry years. In this study, we tested the hypotheses that near‐stream wetland proportion is a better predictor of seasonal (winter, spring, summer, and fall) stream chemistry compared with whole‐catchment averages and that these relationships are stronger in dryer periods with lower hydrologic connectivity. We evaluated relationships between catchment wetland proportion and 16‐year average seasonal flow‐weighted concentrations of both biogeochemically active nutrients, dissolved organic carbon (DOC), nitrate (NO3‐N), total phosphorus (TP), as well as weathering products, calcium (Ca), magnesium (Mg), at ten headwater (<200 ha) forested catchments in south‐central Ontario, Canada. Wetland proportion across the entire catchment was the best predictor of DOC and TP in all seasons and years, whereas predictions of NO3‐N concentrations improved when only the proportion of wetland within the near‐stream zone was considered. This was particularly the case during dry years and dry seasons such as summer. In contrast, Ca and Mg showed no relationship with catchment wetland proportion at any scale or in any season. In forested headwater catchments, variable hydrologic connectivity of source areas to streams alters the role of the near‐stream zone environment, particularly during dry periods. The results also suggest that extent of riparian zone control may vary under changing patterns of hydrological connectivity. Predictions of biogeochemically active nutrients, particularly NO3‐N, can be improved by including near‐stream zone catchment morphology in landscape models.  相似文献   
75.
Regional behaviour of the groundwater flow system in the Cochabamba Valley, Bolivia, is evaluated through the interpretation of tritium (3H) distributions in groundwater samples from wells and springs. In order to interpret groundwater 3H concentrations in Cochabamba Valley, where no historical record of 3H concentrations in rainfall exists, a reconstructed 3H precipitation record is developed. The record of 3H concentrations in precipitation is fairly extensive in the Amazon Basin and this record was extrapolated to the neighbouring Cochabamba Valley. Tritium concentrations in rainfall have been observed to increase under natural conditions with increasing latitude and with increasing distance from the ocean. By considering these trends, a linear relationship for increasing 3H concentration in precipitation is developed, based on data from the Amazon Basin, that realistically predicts regional 3H distributions from the northeast Brazilian coast to Cuzco, Peru. This 3H precipitation record is then extrapolated to the Cochabamba Valley and, after correction for radiogenic decay, is used to interpret trends in groundwater 3H concentrations within the valley.

The groundwater flow system in one of the principal alluvial fans, which serves as an important groundwater resource for the city, is studied in detail. Tritium concentrations drop from approximately 8–10 tritium units (TU) in the recharge area to concentrations below the detection limit of 0.8 TU further out in the valley. Groundwater velocities of approximately 0.3 to 0.9 m d−1 are estimated from distributions of groundwater 3H concentrations along the alluvial fan with the use of the reconstructed precipitation 3H record. Regional characteristics of the groundwater flow system are discussed with respect to future development and protection of the groundwater resources.  相似文献   

76.
The temperature dependence of the hexagonal c unit cell parameter of high-purity NaNO3 shows an anomaly at 553 K corresponding to the orientational ordering transition. The a unit cell parameter is barely influenced by the transition. The single component spontaneous strain for this zone boundary instability is large (55×10–3 at 295 K), and couples quadratically with the order parameter. The critical exponent is found to have the value 0.22 ± 0.01, which differs from that expected in the classical case. Below ca 450 K, crossover to tricritical behaviour is observed (=1/4). The temperature evolution of the macroscopic order parameter as revealed by the temperature dependence of the spontaneous strain follows a tricritical behaviour between 70 K and 450 K. At temperatures below 70 K order parameter saturation is observed. Combined with recent data from specific heat measurements, the critical exponents suggest that the three-dimensional, three-states Potts model may describe the transition.Precursor spontaneous strain above T c is consistent with local ordering and may result from fluctuations associated with an antiordered NO3 group pair configuration.  相似文献   
77.
Mass balance calculations and hydrodynamics of groundwater flow suggest that the solutes in brines of the coastal sabkha aquifer from the Emirate of Abu Dhabi are derived largely from ascending geologic brines into the sabkha from the underlying formations. Solute interpretation for the ascending brine model (ABM) was based on two independent but secondary lines of evidence (solute ratios and solute fluxes). In the current study, direct primary evidence for this ABM was provided through analyses of δ81Br, δ37Cl, and 87Sr/86Sr. Different solute histories of geologic brine and sea water provide an “isotopic fingerprint” that can uniquely distinguish between the two possible sources. Samples from the coastal sabkha aquifer of Abu Dhabi were determined to have a mean δ81Br of 1.17‰ that is statistically equal, at the 95% confidence level, to the mean of 1.11‰ observed in the underlying geologic brine and statistically different than sea water. Similarly, the δ37Cl in sabkha brine has a mean of 0.25‰ and is statistically equal to a mean of 0.21‰ in the underlying geologic brines at the 95% confidence level and statistically different from sea water. Also, dissolved strontium isotope data are consistent with the ABM and even with the complex set of processes in the sabkha, the variance in strontium isotope results is similar to the geologic brine. These observations provide primary direct evidence consistent that the major source of these solutes (and presumably others in the aquifer) is from discharging geologic brines, not from adjacent sea water.  相似文献   
78.
Moraines that dam proglacial lakes pose an increasing hazard to communities in the Andes and other mountain ranges. The moraines are prone to failure through collapse, overtopping by lake waters or the effect of displacement waves resulting from ice and rock avalanches. Resulting floods have led to the loss of thousands of lives in the Cordillera Blanca mountains of Peru alone in the last 100 years. On 22 April 2002 a rock avalanche occurred immediately to the south‐west of Laguna Safuna Alta, in the Cordillera Blanca. The geomorphic evidence for the nature, magnitude and consequences of this event was investigated in August 2002. Field mapping indicated that the avalanche deposited 8–20 × 106 m3 of rock into the lake and onto the surface of the frontal region of Glaciar Pucajirca, which flows into the lake. Repeated bathymetric surveying indicated that ~5 × 106 m3 of this material was deposited directly into the lake. The immediate effect of this event was to create a displacement wave that gained in height as it travelled along the lake basin, overtopping the impounding moraine at the lake's northern end. To achieve overtopping, the maximum wave height must have been greater than 100 m. This, and subsequent seiche waves, caused extensive erosion of both the proximal and distal faces of the impounding terminal moraine. Further deep gullying of the distal face of this moraine resulted from the supply of pressurized water to the face via a relief overflow tunnel constructed in 1978. Two‐dimensional, steady‐state analysis of the stability of the post‐avalanche moraine rampart indicates that its proximal face remains susceptible to major large‐scale rotational failure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
79.
This paper addresses the use of radar remote sensing to map forest above-ground biomass, and discusses the use of biomass maps to test a dynamic vegetation model that identifies carbon sources and sinks and predicts their variation over time. For current radar satellite data, only the biomass of young/sparse forests or regrowth after disturbances can be recovered. An example from central Siberia illustrates that biomass can be measured by radar at a continental scale, and that a significant proportion of the Siberian forests have biomass values less than 50 tonnes/ha. Comparison between the radar map and calculations by the Sheffield Dynamic Global Vegetation Model (SDGVM) indicates that the model considerably overestimates biomass; under-representation of managed areas, disturbed areas and areas of low site quality in the model are suggested reasons for this effect. A case study carried out at the Büdingen plantation forest in Germany supports the argument that inadequate representations of site quality and forest management may cause model overestimates of biomass. Comparison of the calculated biomass of stands planted after 1990 with biomass estimates by radar allows identification of forest stands where the growth conditions assumed by the model are not valid. This allows a quality check on model calculations of carbon fluxes: only calculations for stands where there is good agreement between the data and the model predictions should be accepted. Although the paper only uses the SDGVM model, similar effects are likely in other dynamic vegetation models, and the results show that model calculations attempting to quantify the role of forests as carbon sources or sinks could be qualified and potentially improved by exploiting remotely sensed measurements of biomass.  相似文献   
80.
Summary This paper reports on a small-scale pilot experiment held early in the dry season near Darwin, Australia, in which fine-scale observations of several prescribed fires were made using infrared digital video. Infrared imaging is used routinely to locate fires as infrared radiation suffers little attenuation as it propagates through the smoke that normally obscures visible imagery. However, until now, little use has been made of digital video imagery in analyzing the convective-scale structure of prescribed (or wild) fires. The advantage of digital video imagery is that the individual frames can be objectively analyzed to determine the convective motion in the plane viewed by the camera. The infrared imagery shows mostly rising plumes, much like convective clouds. The flow is highly convective, and the vertical transport of heat is confined to relatively narrow thermals. The updrafts range from a few ms–1 to around 15ms–1. A numerical model is used to simulate one of the prescribed fires at very high-resolution. For the most part, the model predictions compare well to the observations. The model produces plumes that are around 7m high, and spaced around 5m apart, which is similar to that observed. The model correctly predicts the mean rate of spread of the fire to be 1.3ms–1. Perhaps the most serious limitations to using infrared observations of the type presented here are the difficulties in interpreting precisely the relationship between the observed infrared temperature field and the air temperature calculated by the model, and the exact connection between the infrared camera derived flow field and that calculated by the model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号