首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   3篇
  国内免费   1篇
测绘学   2篇
大气科学   4篇
地球物理   22篇
地质学   22篇
海洋学   1篇
天文学   68篇
自然地理   6篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   10篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   8篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   10篇
  2004年   12篇
  2003年   7篇
  2002年   9篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1987年   1篇
  1984年   1篇
  1981年   1篇
  1975年   1篇
排序方式: 共有125条查询结果,搜索用时 187 毫秒
21.
Acidification of surface seawater owing to anthropogenic activities has raised serious concerns on its consequences for marine calcifying organisms and ecosystems. To acquire knowledge concerning the future consequences of ocean acidification (OA), researchers have relied on incubation experiments with organisms exposed to future seawater conditions, numerical models, evidence from the geological record, and recently, observations from aquatic environments exposed to naturally high CO2 and low pH, e.g., owing to volcanic CO2 vents, upwelling, and groundwater input. In the present study, we briefly evaluate the distribution of dissolved CO2–carbonic acid parameters at (1) two locations in the Pacific and the Atlantic Ocean as a function of depth, (2) a mangrove environment in Bermuda, (3) a seasonally stratified body of water in a semi-enclosed sound in Bermuda, and (4) in temporarily isolated tide pools in Southern California. We demonstrate that current in situ conditions of seawater pCO2, pH, and CaCO3 saturation state (Ω) in these environments are similar or even exceed the anticipated changes to these parameters in the open ocean over the next century as a result of OA. The observed differences between the Pacific and Atlantic Oceans with respect to seawater CO2–carbonic acid chemistry, preservation of CaCO3 minerals, and the occurrence and distribution of deep-sea marine calcifiers, support the hypothesized negative effects of OA on the production and preservation of CaCO3 in surface seawater. Clues provided from shallow near-shore environments in Bermuda and Southern California support these predictions, but also highlight that many marine calcifiers already experience relatively high seawater pCO2 and low pH conditions.  相似文献   
22.
23.
Antecedent soil moisture significantly influenced the hydraulic conductivity of the A1, A2e and B21 horizons in a series of strong texture‐contrast soils. Tension infiltration at six supply potentials demonstrated that in the A1 horizon, hydraulic conductivity was significantly lower in the ‘wet’ treatment than in the ‘dry’ treatment. However in the A2e horizon, micropore and mesopore hydraulic conductivity was lower in the ‘dry’ treatment than the ‘wet’ treatment, which was attributed to the precipitation of soluble amorphous silica. In the B21 horizon, desiccation of vertic clays resulted in the formation of shrinkage cracks which significantly increased near‐saturated hydraulic conductivity and prevented the development of subsurface lateral flow in the ‘dry’ treatment. In the ‘wet’ treatment, the difference between the hydraulic conductivity of the A1 and B21 horizons was reduced; however, lateral flow still occurred in the A1 horizon due to difficulty displacing existing soil water further down the soil profile. Results demonstrate the need to account for temporal variation in soil porosity and hydraulic conductivity in soil‐water model conceptualisation and parameterisation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
24.
25.
The evolution of the abundance of galaxy clusters depends sensitively on the value of the cosmological density parameter, Ω0. Recent ASCA data are used to quantify this evolution as measured by the cluster X-ray temperature function. A χ2 minimization fit to the cumulative temperature function, as well as a maximum-likelihood estimate (which requires additional assumptions about cluster luminosities), leads to the estimate Ω0 ≈ 0.45 ± 0.25 (1σ statistical error). Various systematic uncertainties are considered, none of which significantly enhances the probability that Ω0 = 1. These conclusions hold for models with or without a cosmological constant, i.e., with Λ0 = 0 or Λ0 = 1 − Ω0. The statistical uncertainties are at least as large as any of the individual systematic errors that have been considered here, suggesting that additional temperature measurements of distant clusters will allow an improvement in this estimate. An alternative method that uses the highest redshift clusters to place an upper limit on Ω0 is also presented and tentatively applied, with the result that Ω0  1 can be ruled out at the 98 per cent confidence level. Whilst this method does not require a well-defined statistical sample of distant clusters, there are still modelling uncertainties that preclude a firmer conclusion at this time.  相似文献   
26.
87Sr/86Sr ratios of brine from samples from the Michigan and Appalachian Basins, in Ontario and Michigan, covering the stratigraphic interval from the Cambrian to Mississippian, vary from 0.708 to 0.711. With the exception of the salt units of the Salina Formation (Silurian), most values are greater than seawater for the time in question, indicating water-rock interaction. The sources of the radiogenic Sr has not been identified. All samples plot below the GMWL in δ18O−δ2H space, with the Cambrian and Ordovician samples closest to the line. Mixing of brines meteoric and glacial (Pleistocene) water is indicated in some cases. The more concentrated brines from each stratigraphic unit show a very narrow spread in values. All the Ordovician brines show a narrow range over a 200 km area for Sr, O and H isotopes, indicating extensive lateral migration of the fluids.Strontium in the brine has not equilibrated isotopically with its host rock. In some cases the late-stage minerals saddle dolomite, calcite and anhydrite have the same 87Sr/86Sr ratios as the brine, indicating that they precipitated from the brine in isotopic equilibrium.  相似文献   
27.
Twenty-four groundwater samples from seven operating mines at Sudbury, Yellow-knife and Thompson (Ontario, North West Territories and Manitoba, resp.), all from depths greater than 1 km and ranging in total dissolved solids (TDS) from 1900 to 250,000 mg l?1, were measured for their 87Sr86Ar values. Each geographic location gives a limited range in values and each location is distinct from the others. This is interpreted as the result of extensive water-rock interaction on a local scale. For most of the time, these brines were isolated and only recently have been exposed to surface water as a result of the mining operations. The extent of the isolation is shown by the contrasting isotopic values of two “pockets” of water (0.711 vs. 0.716) located on opposite sides of the same fault system on the North Range at Sudbury. The exchange at all sites probably has continued until the present, as indicated by the close agreement between water and present-day87Sr86Sr whole-rock values. If so, it suggests that there is no single age for such brines, but it may be possible to date stages in the water's evolution by determining the age of secondary minerals that equilibrated with the water.  相似文献   
28.
This paper describes the development of the first operational seasonal hydrological forecasting service for the UK, the Hydrological Outlook UK (HOUK). Since June 2013, this service has delivered monthly forecasts of streamflow and groundwater levels, with an emphasis on forecasting hydrological conditions over the next three months, accompanied by outlooks over longer time horizons. This system is based on three complementary approaches combined to produce the outlooks: (i) national-scale modelling of streamflow and groundwater levels based on dynamic seasonal rainfall forecasts, (ii) catchment-scale modelling where streamflow and groundwater level models are driven by historical meteorological forcings (i.e. the Ensemble Streamflow Prediction, ESP, approach), and (iii) a catchment-scale statistical method based on persistence and historical analogues. This paper provides the background to the Hydrological Outlook, describes the various component methods in detail and then considers the impact and usefulness of the product. As an example of a multi-method, operational seasonal hydrological forecasting system, it is hoped that this overview provides useful information and context for other forecasting initiatives around the world.  相似文献   
29.
The textbook concept of an equilibrium landscape, which posits that soil production and erosion are balanced and equal channel incision, is rarely quantified for natural systems. In contrast to mountainous, rapidly eroding terrain, low relief and slow-eroding landscapes are poorly studied despite being widespread and densely inhabited. We use three field sites along a climosequence in South Africa to quantify very slow (2-5 m/My) soil production rates that do not vary across hillslopes or with climate. We show these rates to be indistinguishable from spatially invariant catchment-average erosion rates while soil depth and chemical weathering increase strongly with rainfall across our sites. Our analyses imply landscape-scale equilibrium although the dominant means of denudation varies from physical weathering in dry climates to chemical weathering in wet climates. In the two wetter sites, chemical weathering is so significant that clay translocates both vertically in soil columns and horizontally down hillslope catenas, resulting in particle size variation and the accumulation of buried stone lines at the clay-rich depth. We infer hundred-thousand-year residence times of these stone lines and suggest that bioturbation by termites plays a key role in exhuming sediment into the mobile soil layer from significant depths below the clay layer. Our results suggest how tradeoffs in physical and chemical weathering, potentially modulated by biological processes, shape slowly eroding, equilibrium landscapes. © 2019 John Wiley & Sons, Ltd.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号