首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   765篇
  免费   16篇
  国内免费   7篇
测绘学   17篇
大气科学   77篇
地球物理   195篇
地质学   249篇
海洋学   61篇
天文学   96篇
综合类   6篇
自然地理   87篇
  2021年   9篇
  2020年   6篇
  2019年   6篇
  2018年   13篇
  2017年   13篇
  2016年   20篇
  2015年   9篇
  2014年   14篇
  2013年   41篇
  2012年   23篇
  2011年   31篇
  2010年   28篇
  2009年   36篇
  2008年   47篇
  2007年   34篇
  2006年   30篇
  2005年   31篇
  2004年   26篇
  2003年   21篇
  2002年   16篇
  2001年   18篇
  2000年   20篇
  1999年   19篇
  1998年   16篇
  1997年   14篇
  1996年   21篇
  1995年   9篇
  1994年   5篇
  1993年   15篇
  1992年   10篇
  1991年   14篇
  1990年   12篇
  1989年   17篇
  1988年   5篇
  1987年   6篇
  1986年   7篇
  1985年   9篇
  1984年   5篇
  1983年   17篇
  1982年   18篇
  1981年   5篇
  1980年   5篇
  1979年   11篇
  1978年   8篇
  1977年   6篇
  1975年   7篇
  1974年   8篇
  1973年   8篇
  1971年   3篇
  1930年   3篇
排序方式: 共有788条查询结果,搜索用时 31 毫秒
41.
Paleomagnetic analyses of samples collected from a 500 m thick Jurassic section in the Pontides reveal the presence of two components of remanent magnetization: an unstable, low-temperature component which is removed during thermal demagnetization through 220°C and a dominant component which displays consistent directions through 650°. Curie point and IRM studies indicate that goethite is responsible for the low-temperature component whereas both magnetite and hematite contribute to the more stable component. The pole position determined from the stable magnetization is located at 18.8°N, 91.8°E (α95=7.7°, N=134) indicating that the section has undergone more than 90° clockwise rotation since the Late Jurassic. Ancillary geologic evidence, particularly the orientation of Jurassic facies belts is also consistent with a 90° clockwise rotation in this region of northwest Anatolia. The pole suggests that the section may also have migrated slightly northward. Although the age of these movements is currently unknow, it is proposed that they are principally related to the closure of the Neo-Tethys during the Late Cretaceous/Early Tertiary. Some of the rotation may be related to the right lateral movement along the North Anatolian Transform Fault which was initiated in the Miocene.  相似文献   
42.
43.
44.
45.
A high-resolution three-dimensional model of the Clyde Sea and the adjacent North Channel of the Irish Sea is used to compute the major diurnal and semidiurnal tides in the region, the associated energy fluxes and thickness of the bottom boundary layer. Initially, the accuracy of the model is assessed by performing a detailed comparison of computed tidal elevations and currents in the region, against an extensive database that exists for the M2, S2, N2, K1 and O1 tides. Subsequently, the model is used to compute the tidal energy flux vectors in the region. These show that the major energy flux is confined to the North Channel region, with little energy flux into the Clyde Sea. Comparison with the observed energy flux in the North Channel shows that its across-channel distribution and its magnitude are particularly sensitive to the phase difference between elevation and current. Consequently, small changes in the computed values of these parameters due to slight changes of the order of the uncertainty in the open-boundary values to the model, can significantly influence the computed energy flux. The thickness of the bottom boundary layer in the region is computed using a number of formulations. Depending upon the definition adopted, the empirical coefficient C used to determine its thickness varies over the range 0.1 to 0.3, in good agreement with values found in the literature. In the North Channel, the boundary layer thickness occupies the whole water depth, and hence tidal turbulence produced at the sea bed keeps the region well mixed. In the Clyde Sea, the boundary layer thickness is a small fraction of the depth, and hence the region stratifies.Responsible Editor: Phil Dyke  相似文献   
46.
Gurdak JJ  McCray JE  Thyne G  Qi SL 《Ground water》2007,45(3):348-361
A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability.  相似文献   
47.
In this study we compared reproductive characteristics and steroid hormone levels in the non-indigenous scleractinian coral, Oculina patagonica, inhabiting contaminated vs. uncontaminated reference sites along the Israeli Mediterranean coast. Our results indicate significantly higher steroid levels in both seawater and coral tissue samples from contaminated sites as compared to reference sites, suggesting that corals tend to accumulate steroids from the surrounding waters. Despite their higher steroid levels, corals from the contaminated sites showed reproductive potential comparable to those of the reference sites. Interestingly, a clear distinction could be seen between corals exposed to pollution for long vs. short durations, with the latter showing a failure to complete gametogenesis. This suggests that reproduction in O. patagonica is susceptible to acute rather than chronic stress. The involvement of adjustment/adaptation processes may explain this species tolerance, and may reflect the ability of O. patagonica to successfully invade new areas in the Mediterranean Sea.  相似文献   
48.
Knowledge of seasonal variation in soil structural and related properties is important for the determination of critical periods during which soil is susceptible to accelerated erosion and other degradative processes. The purpose of this research was to evaluate the magnitude of seasonal variations in selected soil and deposited sediment properties in relation to soil erodibility for a Miamian silt-loam soil (Typic Hapludalf) in central Ohio. Erosion plots (USLE-type) were established on a 4·5% slope and maintained under bare, ploughed conditions from 1988 to 1991. Particle size distribution, bulk density(ρb), percentage water stable aggregates (WSA), soil organic carbon (SOC), and total soil nitrogen (TSN) of both soil and sediment samples were monitored between Autumn 1989 and Spring 1991. The soil and sediment particle size distributions followed no clear seasonal trends. Soil ρb increased following tillage (1·20 Mg m−3) and was highest (1·45 Mg m−3) during the autumn owing to soil slumping and consolidation upon drying. Low winter and spring values of ρb and %WSA (20–50% lower than in autumn) were attributed to excessive wetness and freeze–thaw effects. Both SOC and soil TSN contents progressively declined (from 2·18 to 1·79% and 1·97 to 1·75 g kg−1, respectively) after ploughing owing to maintenance of plots under bare, fallow conditions. Spring highs and autumn lows of sediment SOC (3·12 vs. 2·44%) and TSN (2·70 vs. 1·96 g kg−1) contents were a result of the combined effects of soil microbial activity and rainfall erosivity. Soil properties such as bulk density, SOC and WSA, which vary seasonally, can potentially serve as predictors of seasonal soil erodibility, which, in turn, could improve the predictive capacity of soil erosion prediction models. © 1998 John Wiley & Sons, Ltd.  相似文献   
49.
The causes of damage observed in archeological records or preserved monuments are often difficult to be determined unequivocally, particularly when the possibility of secondary earthquake damage exists. Such secondary damage has been previously proposed for the Roman Praetorium, the governor’s palace in the center of Cologne. Ongoing excavations since 2007 revealed additional damage. The existing ground that has been uncovered and documented extends the affected area to 175?×?180 m. We present a comprehensive virtual model of the excavation area based on 200 3D laserscans together with a systematic analysis of the damage patterns and an improved model of the terrain during Roman/Medieval times including geotechnical parameters of the subsurface. Five locations with different damage patterns, including a Roman sewer, the octagonal central part of the Praetorium, a section with strongly inclined massive walls, a 13 m deep deformed well, a collapsed hypocaust, and damages in the Medieval mikveh are analyzed in detail. We use site-specific synthetic strong ground motion seismograms to test the possibility of earthquake-induced ground failures as a cause for the observed damage. This subsurface model is also used to test the possibility of hydraulically-induced damages by seepage and erosion of fine-grained material from stray sand. Heavy rainstorms can induce a direct stream of surface water through the fine sand layers to the ground water table. Simulated ground motion for assumed worst-case earthquake scenarios do not provoke slope instability at the level necessary to explain the structural damages.  相似文献   
50.
As part of a study on freeze-thaw weathering in the maritime Antarctic an investigation was made of the physical properties of the local rock. Tests were made of point-load compressive strength, Schmidt hammer in situ rock strength, moisture content, indentor resistance and the size range of weathering products. The resulting data were used to consider the form of freeze-thaw weathering operative in the field and its relationship to laboratory simulations. A distinct difference between ‘massive rock’ and ‘intact rock’ is observed in the field. It is suggested that future studies should generate a greater database pertaining to rock properties as it is an invaluable aid in the study of mechanical weathering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号