首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   7篇
  国内免费   5篇
测绘学   2篇
大气科学   25篇
地球物理   36篇
地质学   39篇
海洋学   18篇
天文学   14篇
综合类   2篇
自然地理   11篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   3篇
  2012年   8篇
  2011年   10篇
  2010年   7篇
  2009年   6篇
  2008年   13篇
  2007年   4篇
  2006年   5篇
  2005年   10篇
  2004年   4篇
  2003年   2篇
  2002年   6篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有147条查询结果,搜索用时 31 毫秒
81.
82.
This paper analyzes the effects of geology and geomorphology on surface-water/-groundwater interactions, evapotranspiration, and recharge under conditions of long-term climatic change. Our analysis uses hydrologic data from the glaciated Crow Wing watershed in central Minnesota, USA, combined with a hydrologic model of transient coupled unsaturated/saturated flow (HYDRAT2D). Analysis of historical water-table (1970–1993) and lake-level (1924–2002) records indicates that larger amplitude and longer period fluctuations occur within the upland portions of watersheds due to the response of the aquifer system to relatively short-term climatic fluctuations. Under drought conditions, lake and water-table levels fell by as much as 2–4 m in the uplands but by 1 m in the lowlands. The same pattern can be seen on millennial time scales. Analysis of Holocene lake-core records indicates that Moody Lake, located near the outlet of the Crow Wing watershed, fell by as much as 4 m between about 4400 and 7000 yr BP. During the same time, water levels in Lake Mina, located near the upland watershed divide, fell by about 15 m. Reconstructed Holocene climate as represented by HYDRAT2D gives somewhat larger drops (6 and 24 m for Moody Lake and Lake Mina, respectively). The discrepancy is probably due to the effect of three-dimensional flow. A sensitivity analysis was also carried out to study how aquifer hydraulic conductivity and land-surface topography can influence water-table fluctuations, wetlands formation, and evapotranspiration. The models were run by recycling a wet year (1985, 87 cm annual precipitation) over a 10-year period followed by 20 years of drier and warmer climate (1976, 38 cm precipitation). Model results indicated that groundwater-supported evapotranspiration accounted for as much as 12% (10 cm) of evapotranspiration. The aquifers of highest hydraulic conductivity had the least amount of groundwater-supported evapotranspiration owing to a deep water table. Recharge was even more sensitive to aquifer hydraulic conductivity, especially in the lowland regions. These findings have important implications for paleoclimatic studies, because the hydrologic response of a surface-water body will vary across the watershed to a given climate signal.  相似文献   
83.
84.
This article presents an overview of the land ITCZ (Intertropical Convergence Zone) over West Africa, based on analysis of NCAR–NCEP Reanalysis data. The picture that emerges is much different than the classic one. The most important feature is that the ITCZ is effectively independent of the system that produces most of the rainfall. Rainfall linked directly to this zone of surface convergence generally affects only the southern Sahara and the northern-most Sahel, and only in abnormally wet years in the region. A second feature is that the rainbelt normally assumed to represent the ITCZ is instead produced by a large core of ascent lying between the African Easterly Jet and the Tropical Easterly Jet. This region corresponds to the southern track of African Easterly Waves, which distribute the rainfall. This finding underscores the need to distinguish between the ITCZ and the feature better termed the “tropical rainbelt”. The latter is conventionally but improperly used in remote sensing studies to denote the surface ITCZ over West Africa. The new picture also suggests that the moisture available for convection is strongly coupled to the strength of the uplift, which in turn is controlled by the characteristics of the African Easterly Jet and Tropical Easterly Jet, rather than by moisture convergence. This new picture also includes a circulation feature not generally considered in most analyses of the region. This feature, a low-level westerly jet termed the African Westerly Jet, plays a significant role in interannual and multidecadal variability in the Sahel region of West Africa. Included are discussions of the how this new view relates to other aspects of West Africa meteorology, such as moisture sources, rainfall production and forecasting, desertification, climate monitoring, hurricanes and interannual variability. The West African monsoon is also related to a new paradigm for examining the interannual variability of rainfall over West Africa, one that relates changes in annual rainfall to changes in either the intensity of the rainbelt or north–south displacements of this feature. The new view presented here is consistent with a plethora of research on the synoptic and dynamic aspects of the African Easterly Waves, the disturbances that are linked to rainfall over West Africa and spawn hurricanes over the Atlantic, and with our knowledge of the prevailing synoptic and dynamic features. This article demonstrate a new aspect of the West Africa monsoon, a bimodal state, with one mode linked to dry conditions in the Sahel and the other linked to wet conditions. The switch between modes appears to be linked to an inertial instability mechanism, with the cross-equatorial pressure gradient being a critical factor. The biomodal state has been shown for the month of August only, but this month contributes most of the interannual variability. This new picture of the monsoon and interannual variability shown here appears to be relevant not only to interannual variability, but also to the multidecadal variability evidenced in the region between the 1950s and 1980s.  相似文献   
85.
Extensive measurements of the X-ray background (XRB) yield a reasonably reliable characterization of its basic properties. Having resolved most of the cosmic XRB into discrete sources, the levels and spectral shapes of its main components can be used to probe both the source populations and also alternative cosmological and large-scale structure models. Recent observations of clusters seem to provide evidence that clusters formed earlier and are more abundant than predicted in the standard Λ cold dark matter (ΛCDM) model. This motivates interest in alternative models that predict enhanced power on cluster scales. We calculate predicted levels and spectra of the superposed emission from groups and clusters of galaxies in ΛCDM and in two viable alternative non-Gaussian  (χ2)  and early dark energy models. The predicted levels of the contribution of clusters to the XRB in the non-Gaussian models exceed the measured level at low energies and levels of the residual XRB in the 2–8 keV band; these particular models are essentially ruled out. Our work demonstrates the diagnostic value of the integrated X-ray emission from clusters, by considering also its dependences on different metallicities, gas and temperature profiles, Galactic absorption, merger scenarios and on a non-thermal pressure component. We also show that the XRB can be used for an upper limit for the concentration parameter value.  相似文献   
86.
Major ion and stable isotope geochemistry allow groundwater/surface-water interaction associated with saline to hypersaline lakes from the Willaura region of Australia to be understood. Ephemeral lakes lie above the water table and locally contain saline water (total dissolved solids, TDS, contents up to 119,000 mg/L). Saline lakes that lack halite crusts and which have Cl/Br ratios similar to local surface water and groundwater are throughflow lakes with high relative rates of groundwater outflows. Permanent hypersaline lakes contain brines with TDS contents of up to 280,000 mg/L and low Cl/Br ratios due to the formation of halite in evaporite crusts. These lakes are throughflow lakes with relatively low throughflow rates relative to evaporation or terminal discharge lakes. Variations in stable isotope and major ion geochemistry show that the hypersaline lakes undergo seasonal cycles of mineral dissolution and precipitation driven by the influx of surface water and evaporation. Despite the generation of highly saline brines in these lakes, leakage from the adjacent ephemeral lakes or saline throughflow lakes that lack evaporite crusts is mainly responsible for the high salinity of shallow groundwater in this region.  相似文献   
87.
We provide a quantitative assessment of the probability distribution function of the concentration parameter of galaxy clusters. We do so by using the probability distribution function of halo formation times, calculated by means of the excursion set formalism, and a formation redshift-concentration scaling derived from results of N -body simulations. Our results suggest that the observed high concentrations of several clusters are quite unlikely in the standard Λ cold dark matter (ΛCDM) cosmological model, but that due to various inherent uncertainties, the statistical range of the predicted distribution may be significantly wider than commonly acknowledged. In addition, the probability distribution function of the Einstein radius of A1689 is evaluated, confirming that the observed value of  ∼45 ± 5 arcsec  is very improbable in the currently favoured cosmological model. If, however, a variance of ∼20 per cent in the theoretically predicted value of the virial radius is assumed, then the discrepancy is much weaker. The measurement of similarly large Einstein radii in several other clusters would pose a difficulty to the standard model. If so, earlier formation of the large-scale structure would be required, in accord with predictions of some quintessence models. We have indeed verified that in a viable early dark energy model large Einstein radii are predicted in as many as a few tens of high-mass clusters.  相似文献   
88.
Understanding climate during the last interglacial is critical for understanding how modern climate change differs from purely naturally forced climate change. Here we present the first high-resolution ice core record of the last interglacial and transition to the subsequent glacial period from Antarctica and the first glaciochemical record for this period from West Antarctica. Samples were collected from a horizontal ice trench in the Mt. Moulton Blue Ice Area (BIA) in West Antarctica and analyzed for their soluble major anions (Cl?, NO3?, SO42-), major and trace elements (Na, Mg, Ca, Sr, Cd, Cs, Ba, La, Ce, Pr, Pb, Bi, U, As, Al, S, Ti, V, Cr, Mn, Fe, Co, Cu, Zn) and water hydrogen isotopes (δD). The last interglacial is characterized by warmer temperatures (δD), weakened atmospheric circulation (dust elements, seasalts aerosols), decreased sea ice extent (Na, nssSO42-) and decreased oceanic productivity (nssSO42-). A combined examination of Mt. Moulton seasalts, dust, nssSO42- and δD records indicates that the last interglacial was extremely stable compared to glacial age climate events and it ended through a long period of gradual cooling unlike that projected for future Holocene climate.  相似文献   
89.
Dispersive Stresses at the Canopy Upstream Edge   总被引:1,自引:0,他引:1  
The derivation of flow and mass transfer models in canopy and porous media environments involves the spatial-averaging of the flow properties and their subscale equations. The averaging of the momentum equation generates the dispersive stress terms that represent the subscale spatial variations of the unresolved velocity field. While previous studies ignored the dispersive stresses in their flow models, recent evidence indicates that the dispersive stresses may be important. Here we focus our attention on the magnitude of the normal dispersive stresses in the entry region of a ‘forest patch’, where the in-canopy velocities are large and the longitudinal derivatives do not cancel out. Highly detailed particle image velocimetry measurements, at a temporal and spatial resolution of 5 Hz and 1.4 mm, are obtained inside and around a 1-m long model canopy which consists of transparent vertical cylinders 6 mm in diameter and 74.3 mm high (h). The cylinders are randomly distributed to form a relatively sparse forest patch with a leaf area density of 7.56 m−1 and a fluid volume fraction (porosity) of 0.965. We present results of the double averaged flow properties at three different regions of the forest patch; the upstream edge (x ≈ 0), the fully-developed interior region (x ≈ 10h) and the downstream edge (x ≈ 13h). We find that the normal dispersive stresses around the entry region of the forest patch are significantly larger than the normal Reynolds stresses. An order of magnitude analysis of the relevant terms in the momentum equation indicates that the longitudinal derivatives of the dispersive stresses are of the same order of magnitude as that of the drag force and similar to that of the horizontal convection term. The longitudinal derivatives of the Reynolds stresses are smaller, though cannot be ignored. Comparing these results with the characteristic profiles measured in the fully-developed region indicates that the dispersive stresses, which are generated at the forest patch entrance, decrease along an adjustment region while maintaining their profile shape. We find that the dispersive stresses influence the rate at which momentum penetrates into the canopy. These observations suggest that under certain flow conditions, dispersive stresses may dominate the momentum balance and therefore must be considered in future canopy and porous media flow models.  相似文献   
90.
Phytoplankton fluorescence, temperature and salinity were measured from December through February using in situ instruments deployed at two locations in the southern Ross Sea, Antarctica during the austral summers of three consecutive years (2003–2004, 2004–2005, and 2005–2006) to assess the short-term, seasonal and interannual variations in phytoplankton biomass and oceanographic conditions. The seasonal climatologies of physical forcing variables were also determined from satellite measurements, and the data from the two sites compared to the 2000–2009 mean. In situ fluorometers were deployed at three depths at 77°S, 172.7°E and 77.5°S, 180°. Significant differences between the two sites were consistently observed, confirming the anticipated high level of spatial and temporal heterogeneity. Chlorophyll fluorescence was maximal in late December, and generally decreased rapidly to modest levels in January and February. However, during 1 year (2003–2004) a secondary bloom was found, with summer maxima being similar to those observed during spring. Fluorescence displayed a strong diel cycle, with strong quenching during periods of maximum irradiance. The magnitude of this reduction was large (the minimum average fluorescence was 25% of the daily mean) and decreased with depth. Fluorescence varied interannually, with the absolute levels and temporal patterns being different among years. The two sites had different temperature/salinity properties as measured at 24 m, and both variables changed with time. During 2004–2005 we were able to continuously measure the photosynthetic quantum efficiency of PSII (Fv/Fm) at 11 m, which revealed a minimum in December, and an increase in January, whereas the absolute fluorescence (Fo) decreased simultaneously. We suggest that this reflected a mixing event, whereby available irradiance increased, allowing a short period of growth in a more favorable optical environment. While substantial variations from the mean physical forcing were observed, the linkage of these physical variations with fluorescence was not always clear. Short-term (over 24-h) changes in fluorescence occurred, and were likely related to advective events. Wind events altered fluorescence in the surface layer, and these redistributed phytoplankton in the surface. The variability in chlorophyll fluorescence and physical forcing over a variety of scales in the Ross Sea provides insights into temporal–spatial coupling of phytoplankton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号