首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   8篇
  国内免费   3篇
测绘学   7篇
大气科学   23篇
地球物理   28篇
地质学   115篇
海洋学   9篇
天文学   20篇
综合类   6篇
自然地理   5篇
  2023年   3篇
  2022年   11篇
  2021年   15篇
  2020年   7篇
  2019年   8篇
  2018年   13篇
  2017年   17篇
  2016年   20篇
  2015年   11篇
  2014年   13篇
  2013年   22篇
  2012年   7篇
  2011年   4篇
  2010年   4篇
  2009年   10篇
  2008年   7篇
  2007年   1篇
  2006年   6篇
  2005年   2篇
  2004年   8篇
  2003年   3篇
  2002年   1篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
排序方式: 共有213条查询结果,搜索用时 0 毫秒
41.

The water resources that supply most of the megacities in the world are under increased pressure because of land transformation, population growth, rapid urbanization, and climate-change impacts. Dhaka, in Bangladesh, is one of the largest of 22 growing megacities in the world, and it depends on mainly groundwater for all kinds of water needs. The regional groundwater-flow model MODFLOW-2005 was used to simulate the interaction between aquifers and rivers in steady-state and transient conditions during the period 1981–2013, to assess the impact of development and climate change on the regional groundwater resources. Detailed hydro-stratigraphic units are described according to 150 lithology logs, and a three-dimensional model of the upper 400 m of the Greater Dhaka area was constructed. The results explain how the total abstraction (2.9 million m3/d) in the Dhaka megacity, which has caused regional cones of depression, is balanced by recharge and induced river leakage. The simulated outcome shows the general trend of groundwater flow in the sedimentary Holocene aquifers under a variety of hydrogeological conditions, which will assist in the future development of a rational and sustainable management approach.

  相似文献   
42.
43.
44.
S.S. Li  R.G. Millar  S. Islam   《Geomorphology》2008,95(3-4):206-222
A two-dimensional (2D) numerical hydrodynamic-morphological model is developed to investigate gravel transport and channel morphology in a large wandering gravel-bed river, the Fraser River Gravel Reach, in British Columbia, Canada. The model takes into count multi-fraction bedload transport, including the effects of surface coarsening, hiding and protrusion. Model outputs together with river discharge statistics were analyzed, producing distributed sediment budget and well-defined, localised zones of aggradation and degradation along the gravel reach. Long-term channel response to gravel extraction from aggrading zones as a flood hazard mitigation measure was also investigated numerically to assess the effectiveness of such an extraction. The total computed sediment budget agrees well with results based on field measurements of gravel transport available to us. This study points to the importance of a number of factors to bedload predictions: the gravel-to-sand ratio, the adequacy of resolving the wandering planform, and the distinction between bed shear stress driving bedload transport and bed resistance on the flow. These are in addition to the physical processes governing the flow field and gravel mobilization. The methodology presented in this paper can provide a scientific basis for gravel management including monitoring and extraction in order to maintain adequate flood protection and navigation, while preserving the ecosystem.  相似文献   
45.
46.
The present study aimed to quantify the water and sediment quality and growth and production parameters and to establish nutrient budgets for an average of five selected semi-intensive shrimp ponds in Bangladesh over a growing cycle. Physico-chemical parameters of water and sediments were measured and analyzed by standard methods. Gross yield (kg ha-1) of shrimp was calculated from the stocking and harvesting data. Finally, a partial nutrient mass budget for N and P was calculated. Most of the parameters of water and sediments correlated significantly with each other suggesting a high degree of interactions between different parameters in the system. Significantly higher concentrations of all species of nitrogenous nutrients were recorded in the effluent waters than that entering into the ponds. Therefore, a high loading and net output of nitrogenous nutrients in effluent waters was documented. The study also indicated a net discharge of solids and minerals through effluent loading. However, significantly lower concentrations of phosphorus in the effluent water indicated a net retention and trapping of phosphatic nutrients in the environment. Total production ranged between 532.0 and 697.0 kg ha-1 cycle-1 and P. monodon production between 484.0 and 562.0 kg ha-1 cycle-1. Ponds gained nitrogen primarily from intake water (55%) and fertilizers (29%), and nitrogen was lost primarily from water exchange (78%) and harvested shrimp (12%). Phosphorus gain occurred mostly from intake water (52%) and fertilizers (25%), and phosphorus was lost primarily from water exchange (52%) and harvested shrimp (3.3%). About 10% of input nitrogen and 44% of phosphorus were not accounted for in measured losses, and presumably were fixed or metabolized in the system. On average, 78 g N was discharged to and 25 g P was removed from the surrounding water by the system for each kilogram of shrimp produced. Mean conversion of feed nitrogen and phosphorus to shrimp flesh averaged 74% and 40%, respectively. It was concluded that semi-intensive systems serve as net supplier of N to and net remover of P from the surrounding water.  相似文献   
47.
Weather radar has a potential to provide accurate short‐term (0–3 h) forecasts of rainfall (i.e. radar nowcasts), which are of great importance in warnings and risk management for hydro‐meteorological events. However, radar nowcasts are affected by large uncertainties, which are not only linked to limitations in the forecast method but also because of errors in the radar rainfall measurement. The probabilistic quantitative precipitation nowcasting approach attempts to quantify these uncertainties by delivering the forecasts in a probabilistic form. This study implements two forms of probabilistic quantitative precipitation nowcasting for a hilly area in the south of Manchester, namely, the theoretically based scheme [ensemble rainfall forecasts (ERF)‐TN] and the empirically based scheme (ERF‐EM), and explores which one exhibits higher predictive skill. The ERF‐TN scheme generates ensemble forecasts of rainfall in which each ensemble member is determined by the stochastic realisation of a theoretical noise component. The so‐called ERF‐EM scheme proposed and applied for the first time in this study, aims to use an empirically based error model to measure and quantify the combined effect of all the error sources in the radar rainfall forecasts. The essence of the error model is formulated into an empirical relation between the radar rainfall forecasts and the corresponding ‘ground truth’ represented by the rainfall field from rain gauges measurements. The ensemble members generated by the two schemes have been compared with the rain gauge rainfall. The hit rate and the false alarm rate statistics have been computed and combined into relative operating characteristic curves. The comparison of the performance scores for the two schemes shows that the ERF‐EM achieves better performance than the ERF‐TN at 1‐h lead time. The predictive skills of both schemes are almost identical when the lead time increases to 2 h. In addition, the relation between uncertainty in the radar rainfall forecasts and lead time is also investigated by computing the dispersion of the generated ensemble members. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
48.
1INTRODUCTION Hydroponics(aGreekword,hydromeanswater andponos,labour),asoil-lessagriculture,isa termtobedescribedinseveralwaysinwhichplants cangrowwithoutsoil,byuseofaninertmedium whereplantcantakeupessentialnutrients,either fromwaterinwhichanutrientsolutionisaddedor fromorganicmaterialsthatexistsinthemedium.Thesemediacanbegravel,sand,peat,vermiculate,prelite,sawdustorotherplantmatters(organiccom ponents).Therefore,theprocessinwhichaquatic weedsaredumpedonwatertoconstructfloatingbed orart…  相似文献   
49.
In the present work,we study the time evolution,significance of the N-S asymmetry excesses presented as a function of the solar cycle and prominent rotational p...  相似文献   
50.
Islam  Aznarul  Sarkar  Biplab  Saha  Ujwal Deep  Islam  Mainul  Ghosh  Susmita 《Natural Hazards》2022,111(1):1019-1046

The present study has been a pioneering effort examining the role of an annual flood as a potent stimulus inducing changes in channel geomorphology of the Mayurakshi River, India. Twenty cross sections have been considered for the measurement of various hydro-geomorphic attributes of the river in both the pre- and post-flood conditions in 2018. The study sensed an escalating trend for channel width, width/depth ratio, and wetted perimeter while the reverse was also detected for average depth, maximum depth, cross-sectional area, and hydraulic radius. For example, the width/depth ratio recorded an increase of?~?11%, and the hydraulic radius depicted a decrease of?~?8%. Furthermore, channel asymmetry, bed asymmetry and bed relief index experienced a decrease after the flood. The sudden hydraulic impulse during monsoon flood as manifested in velocity, discharge, specific stream power, Reynolds number, Froude number increases the erosivity of the fluid. Besides the hydraulic factors, bank material (massive sandbank susceptible to hydraulic action and mixed bank constituted by alternate bands of sand and silt, and vulnerable to failure by piping action) brings substantial changes in channel morphology. Moreover, anthropogenic interventions such as sand mining are found to play a significant role in channel behaviour. The role of the multiple factors driving the morphological changes of the cross sections has been unpacked using canonical component analysis.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号