首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   11篇
  国内免费   3篇
测绘学   2篇
大气科学   9篇
地球物理   60篇
地质学   74篇
海洋学   9篇
天文学   30篇
自然地理   15篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   5篇
  2018年   11篇
  2017年   4篇
  2016年   8篇
  2015年   8篇
  2014年   8篇
  2013年   7篇
  2012年   11篇
  2011年   12篇
  2010年   12篇
  2009年   14篇
  2008年   15篇
  2007年   11篇
  2006年   12篇
  2005年   5篇
  2004年   8篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1990年   3篇
  1982年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1962年   1篇
  1957年   1篇
  1936年   1篇
  1927年   1篇
排序方式: 共有199条查询结果,搜索用时 62 毫秒
61.
The vent-hosted hydrothermal system of Ruapehu volcano is normally covered by a c. 10 million m3 acidic crater lake where volcanic gases accumulate. Through analysis of eruption observations, granulometry, mineralogy and chemistry of volcanic ash from the 1995–1996 Ruapehu eruptions we report on the varying influences on environmental hazards associated with the deposits. All measured parameters are more dependent on the eruptive style than on distance from the vent. Early phreatic and phreatomagmatic eruption phases from crater lakes similar to that on Ruapehu are likely to contain the greatest concentrations of environmentally significant elements, especially sulphur and fluoride. These elements are contained within altered xenolithic material extracted from the hydrothermal system by steam explosions, as well as in residue hydrothermal fluids adsorbed on to particle surfaces. In particular, total F in the ash may be enriched by a factor of 6 relative to original magmatic contents, although immediately soluble F does not show such dramatic increases. Highly soluble NaF and CaSiF6 phases, demonstrated to be the carriers of ‘available’ F in purely magmatic eruptive systems, are probably not dominant in the products of phreatomagmatic eruptions through hydrothermal systems. Instead, slowly soluble compounds such as CaF2, AlF3 and Ca5(PO4)3F dominate. Fluoride in these phases is released over longer periods, where only one third is leached in a single 24-h water extraction. This implies that estimation of soluble F in such ashes based on a single leach leads to underestimation of the F impact, especially of a potential longer-term environmental hazard. In addition, a large proportion of the total F in the ash is apparently soluble in the digestive system of grazing animals. In the Ruapehu case this led to several thousand sheep deaths from fluorosis.  相似文献   
62.
Paleolake sediment, constrained by tephrochronology, from Onepoto basin volcanic crater in Auckland, Northern New Zealand (36° 48′S), provides one of the few uninterrupted records of paleovegetation for marine oxygen isotope stages (MIS) 4 and 3 (76,000–26,000 yr B.P.) in the region. This period was characterized by cool temperate conifer-hardwood forest that lacked some of the warmer taxa typical of the Holocene. The period 64,400–60,500 yr B.P. was marked by opening of forest canopy and expansion of small trees and shrubs, and correlates to the thermal minima of MIS 4. However, the landscape was never as open as the forest-shrubland mosaic of the MIS 2. The beginning of MIS 3 (60,500–50,500 yr B.P.) was marked by the dramatic expansion and then decline of conifer-hardwood forest dominated by Dacrydium cupressinum, a species that prefers wetter conditions. This forest was succeeded by the typically montane Nothofagus at 50,500 yr B.P., corresponding to a thermal decline. Thus, MIS 3 began with an abrupt change to moist cool conditions that lasted about 5000 yr, followed by gradual cooling and dryer conditions. This supports some interpretations from other parts of the southwest Pacific region, that MIS 3 was a period of increased precipitation. The widespread and stratigraphically important Rotoehu tephra, erupted from Okataina Volcanic Centre, has been variously dated at 45,000–65,000 yr B.P. At Onepoto, sedimentation rate and paleovegetation reconstruction imply an age of c. 44,300 yr B.P. The tephra provides a correlation horizon in the marine and terrestrial realms during a period (MIS 3) difficult to date by radiometric methods.  相似文献   
63.
We have documented 80 tephra beds dating from ca. 9.5 to >50 ka, contained within continuously deposited palaeolake sediments from Onepoto Basin, a volcanic explosion crater in Auckland, New Zealand. The known sources for distal (>190 km from vent) tephra include the rhyolitic Taupo Volcanic Centre (4) and Okataina Volcanic Centre (14), and the andesitic Taranaki volcano (40) and Tongariro Volcanic Centre (3). The record provides evidence for four new events between ca. 50 and 28 ka (Mangaone Subgroup) suggesting Okataina was more active than previously known. The tephra record also greatly extends the known northern dispersal of other Mangaone Subgroup tephra. Ten rhyolitic tephra pre-date the Rotoehu eruption (>ca. 50 ka), and some are chemically dissimilar to post-50 ka rhyolites. Some of these older tephra were produced by large-magnitude events; however, their source remains uncertain. Eight tephra from the local basaltic Auckland Volcanic Field (AVF) are also identified. Interpolation of sedimentation rates allow us to estimate the timing of 12 major explosive eruptions from Taranaki volcano in the 27.5-9.5-ka period. In addition, 28 older events are recognised. The tephra are trachytic to rhyolitic in composition. All have high K2O contents (>3 wt%), and there are no temporal trends. This contrasts with the proximal lava record that shows a trend of increasing K2O with time. By combining the Onepoto tephra record with that of the previously documented Pukaki crater, 15 AVF basaltic fall events are constrained at: 34.6, 30.9, 29.6, 29.6, 25.7, 25.2, 24.2, 23.8, 19.4, 19.4, 15.8 and 14.5 ka, and three pre-50 ka events. This provides some of the best age constraints for the AVF, and the only reliable data for hazard recurrence calculations. The minimum event frequency of both distal and local fall events can be estimated, and demonstrates the Auckland City region is frequently impacted by ash fall from many volcanoes.  相似文献   
64.
65.
Extracting true amplitude versus angle common image gathers is one of the key objectives in seismic processing and imaging. This is achievable to different degrees using different migration techniques (e.g., Kirchhoff, wavefield extrapolation, and reverse time migration techniques) and is a common tool in exploration, but the costs can vary depending on the selected migration algorithm and the desired accuracy. Here, we investigate the possibility of combining the local‐shift imaging condition, specifically the time‐shift extended imaging condition, for angle gathers with a Kirchhoff migration. The aims are not to replace the more accurate full‐wavefield migration but to offer a cheaper alternative where ray‐based methods are applicable and to use Kirchhoff time‐lag common image gathers to help bridge the gap between the traditional offset common image gathers and reverse time migration angle gathers; finally, given the higher level of summation inside the extended imaging migration, we wish to understand the impact on the amplitude versus angle response. The implementation of the time‐shift imaging condition along with the computational cost is discussed, and results of four different datasets are presented. The four example datasets, two synthetic, one land acquisition, and a marine dataset, have been migrated using a Kirchhoff offset method, a Kirchhoff time‐shift method, and, for comparison, a reverse time migration algorithm. The results show that the time‐shift imaging condition at zero time lag is equivalent to the full offset stack as expected. The output gathers are cleaner and more consistent in the time‐lag‐derived angle gathers, but the conversion from time lag to angle can be considered a post‐processing step. The main difference arises in the amplitude versus offset/angle distribution where the responses are different and dramatically so for the land data. The results from the synthetics and real data show that a Kirchhoff migration with an extended imaging condition is capable of generating subsurface angle gathers. The same disadvantages with a ray‐based approach will apply using the extended imaging condition relative to a wave equation angle gather solution. Nevertheless, using this approach allows one to explore the relationship between the velocity model and focusing of the reflected energy, to use the Radon transformation to remove noise and multiples, and to generate consistent products from a ray‐based migration and a full‐wave equation migration, which can then be interchanged depending on the process under study.  相似文献   
66.
The importance of characterizing the ecohydrological interactions in natural, damaged/drained, and restored bogs is underscored by the importance of peatlands to global climate change and the growing need for peatland restoration. An understudied aspect of peatland ecohydrology is how shallow lateral flow impacts local hydrological conditions and water balance, which are critical for peatland restoration success. A novel method is presented using microcosms installed in the field to understand the dynamics of shallow lateral flow. Analysis of the difference in water table fluctuation inside and outside the microcosm experimental areas allowed the water balance to be constrained and the calculation of lateral flow and evapotranspiration. As an initial demonstration of this method, a series of four microcosm experiments were set up in locations with differing ecological quality and land management histories, on a raised bog complex in the midlands of Ireland. The timing and magnitude of the lateral flow differed considerably between locations with differing ecological conditions, indicating that shallow lateral flow is an important determining factor in the ecohydrological trajectory of a recovering bog system. For locations where Sphagnum spp. moss layer was present, a slow continuous net lateral input of water from the upstream catchment area supported the water table during drought periods, which was not observed in locations lacking Sphagnum. Consistent with other studies, evapotranspiration was greater in locations with a Spaghnum moss layer than in locations with a surface of peat soil.  相似文献   
67.
We have investigated silicate emulsions in impact glasses and impact melt rocks from the Wabar (Saudi Arabia), Kamil (Egypt), Barringer (USA), and Tenoumer (Mauritania) impact structures, and in experimentally generated impact glasses and laser-generated glasses (MEMIN research unit) by scanning electron microscopy, electron microprobe analysis, and transmission electron microscopy. Textural evidence of silicate liquid immiscibility includes droplets of one glass disseminated in a chemically distinct glassy matrix; sharp phase boundaries (menisci) between the two glasses; deformation and coalescence of droplets; and occurrence of secondary, nanometer-sized quench droplets in Si-rich glasses. The compositions of the conjugate immiscible liquids (Si-rich and Fe-rich) are consistent with phase separation in two-liquid fields in the general system Fe2SiO4–KAlSi3O8–SiO2–CaO–MgO–TiO2–P2O5. Major-element partition coefficients are well correlated with the degree of polymerization (NBO/T) of the Si-rich melt: Fe, Ca, Mg, and Ti are concentrated in the poorly polymerized, Fe-rich melt, whereas K, Na, and Si prefer the highly polymerized, Si-rich melt. Partitioning of Al is less pronounced and depends on bulk melt composition. Thus, major element partitioning between the conjugate liquids closely follows trends known from tholeiitic basalts, lunar basalts, and experimental analogs. The characteristics of impact melt inhomogeneity produced by melt unmixing in a miscibility gap are then compared to impact melt inhomogeneity caused by incomplete homogenization of different (miscible or immiscible) impact melts that result from shock melting of different target lithologies from the crater's melt zone, which do not fully homogenize and equilibrate due to rapid quenching. By taking previous reports on silicate emulsions in impact glasses into account, it follows that silicate impact melts of variable composition, cooling rate, and crystallization history might readily unmix during cooling, thereby rendering silicate liquid immiscibility a much more common process in the evolution of impact melts than previously recognized.  相似文献   
68.
69.
Ohne ZusammenfassungMit 2 Karten, 4 Profilen und 2 TextabbildungenHerrn Prof. Dr.K. H. Scheumann zum 80. Geburtstag gewidmet.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号