The Hong’an area (western Dabie Mountains) is the westernmost terrane in the Qinling-Dabie-Sulu orogen that preserves UHP
eclogites. The ages of the UHP metamorphism have not been well constrained, and thus hinder our understanding of the tectonic
evolution of this area. LA-ICPMS U–Pb age, trace element and Hf isotope compositions of zircons of a granitic gneiss and an
eclogite from the Xinxian UHP unit in the Hong’an area were analyzed to constrain the age of the UHP metamorphism. Most zircons
are unzoned or show sector zoning. They have low trace element concentrations, without significant negative Eu anomalies.
These metamorphic zircons can be further subdivided into two groups according to their U–Pb ages, and trace element and Lu–Hf
isotope compositions. One group with an average age of 239 ± 2 Ma show relatively high and variable HREE contents (527 ≥ LuN ≥ 14) and 176Lu/177Hf ratios (0.00008–0.000931), indicating their growth prior to a great deal of garnet growth in the late stage of continental
subduction. The other group yields an average age of 227 ± 2 Ma, and shows consistent low HREE contents and 176Lu/177Hf ratios, suggesting their growth with concurrent garnet crystallization and/or recrystallization. These two groups of age
are taken as recording the time of prograde HP to UHP and retrograde UHP–HP stages, respectively. A few cores have high Th/U
ratios, high trace element contents, and a clear negative Eu anomaly. These features support a magmatic origin of these zircon
cores. The upper intercept ages of 771 ± 86 and 752 ± 70 Ma for the granitic gneiss and eclogite, respectively, indicate that
their protoliths probably formed as a bimodal suite in rifting zones in the northern margin of the Yangtze Block. Young Hf
model ages (TDM1) of magmatic cores indicate juvenile (mantle-derived) materials were involved in their protolith formation.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
Many light rare earth deposits, such as Maoniuping, Dalucao, Panzhihua deposits, are collectively distributed in Panxi rift of Sichuan Province, China, and closely associated with the aegirine quartz syenite-carbonatite complex. Carbon and oxygen isotope studies demonstrate that the carbonatites in the complex are of typical igneous origin related to mantle processes. Electronic microprobe studies show that the fluid-melt inclusions found in the complex are enriched in light rare earth elements (LREE), which suggests that the magma was rich in LREE and could serve as the ore source for the regional LREE mineralization. Both the aegirine quartz syenite-carbonatite complex and the LREE mineralization found therein were derived from the mantle. The rare gas isotope analyses also support that there is a genetic association between the LREE mineralization and mantle processes.