首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   6篇
测绘学   1篇
大气科学   3篇
地球物理   12篇
地质学   40篇
海洋学   1篇
天文学   7篇
综合类   1篇
自然地理   5篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   6篇
  2018年   2篇
  2017年   3篇
  2016年   8篇
  2015年   4篇
  2014年   5篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   2篇
  2007年   3篇
  2006年   2篇
  2003年   5篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
21.
Oedometric mechanical compaction tests were performed on brine-saturated synthetic samples consisting of silt-clay mixtures to study changes in microfabric and rock properties as a function of effective stress. The silt consisted of crushed quartz (∼100%) with grain size range between 4 and 40 μm, whereas the clay consisted of 81% kaolinite, 14% mica/illite and 5% microcline of grain size between 0.4 and 30 μm. Five sample pairs ranging in composition from pure silt to pure clay were compacted to 5 and 50 MPa effective stress respectively. SEM studies were carried out to investigate microfabric changes in the mechanically compacted silt-clay mixtures. The degree of alignment of the different minerals present (quartz, mica/illite and kaolinite) were computed by using an image analysis software. Experimental compaction have measured the changes in the rock properties such as porosity and velocity as a function of effective stress for different mixtures of clay and silt. Clay-rich samples showed a higher degree of mineral orientation and lower porosity compared to silt-dominated samples as a function of effective stress. Pure clay sample had 11% porosity at 50 MPa effective stress whereas the pure silt sample retained about 29% porosity at the same effective stress. The experiments showed that low porosity down to 11% is possible by mechanical compaction only. A systematic increase in strain was observed in the silt-clay mixtures with increasing clay content but the porosity values found for the 50:50 silt-clay mixture were lower than that of 25:75 silt-clay mixture. No preferential mineral orientation is expected before compaction owing to the high initial porosity suggesting that the final fabric is a direct result of the effective stress. Both P- and S-wave velocities increased in all silt-clay mixtures with increasing effective stress. The maximum P- and S-wave velocities were observed in the 25:75 silt-clay mixture whereas the minimum Vp and Vs were recorded in the pure silt mixture. At 50 MPa effective stress P- wave velocities as high as 3 km/s resulted from experimental mechanical compaction alone. The results show that fine-grained sediment porosity and velocity are dependent on microfabric, which in turn is a function of grain size distribution, particle shape, sediment composition and stress. At 5 MPa effective stress, quartz orientation increased as a function of the amount of clay indicating that clay facilitate rotation of angular quartz grains. Adding clay from 25% to 75% in the silt-clay mixtures at 50 MPa effective stress decreased the quartz alignment. The clay mineral orientation increased by increasing both the amount of clay and the effective stress, the mica/illite fabric alignment being systematically higher than that of kaolinite. Even small amount of silt (25%) added to pure clay reduced the degree of clay alignment significantly. This study demonstrates that experimental compaction of well characterized synthetic mudstones can be a useful tool to understand microfabric and rock properties of shallow natural mudstones where mechanical compaction is the dominant process.  相似文献   
22.
This paper examines the impacts of climate change on future water yield with associated uncertainties in a mountainous catchment in Australia using a multi‐model approach based on four global climate models (GCMs), 200 realisations (50 realisations from each GCM) of downscaled rainfalls, 2 hydrological models and 6 sets of model parameters. The ensemble projections by the GCMs showed that the mean annual rainfall is likely to reduce in the future decades by 2–5% in comparison with the current climate (1987–2012). The results of ensemble runoff projections indicated that the mean annual runoff would reduce in future decades by 35%. However, considerable uncertainty in the runoff estimates was found as the ensemble results project changes of the 5th (dry scenario) and 95th (wet scenario) percentiles by ?73% to +27%, ?73% to +12%, ?77% to +21% and ?80% to +24% in the decades of 2021–2030, 2031–2040, 2061–2070 and 2071–2080, respectively. Results of uncertainty estimation demonstrated that the choice of GCMs dominates overall uncertainty. Realisation uncertainty (arising from repetitive simulations for a given time step during downscaling of the GCM data to catchment scale) of the downscaled rainfall data was also found to be remarkably high. Uncertainty linked to the choice of hydrological models was found to be quite small in comparison with the GCM and realisation uncertainty. The hydrological model parameter uncertainty was found to be lowest among the sources of uncertainties considered in this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
23.
In this study, a quantitative assessment of uncertainty was made in connection with the calibration of Australian Water Balance Model (AWBM) for both gauged and ungauged catchment cases. For the gauged catchment, five different rainfall data sets, 23 different calibration data lengths and eight different optimization techniques were adopted. For the ungauged catchment case, the optimum parameter sets obtained from the nearest gauged catchment were transposed to the ungauged catchments, and two regional prediction equations were used to estimate runoff. Uncertainties were ascertained by comparing the observed and modelled runoffs by the AWBM on the basis of different combinations of methods, model parameters and input data. The main finding from this study was that the uncertainties in the AWBM modelling outputs could vary from ?1.3% to 70% owing to different input rainfall data, ?5.7% to 11% owing to different calibration data lengths and ?6% to 0.2% owing to different optimization techniques adopted in the calibration of the AWBM. The performance of the AWBM model was found to be dominated mainly by the selection of appropriate rainfall data followed by the selection of an appropriate calibration data length and optimization algorithm. Use of relatively short data length (e.g. 3 to 6 years) in the calibration was found to generate relatively poor results. Effects of different optimization techniques on the calibration were found to be minimal. The uncertainties reported here in relation to the calibration and runoff estimation by the AWBM model are relevant to the selected study catchments, which are likely to differ for other catchments. The methodology presented in this paper can be applied to other catchments in Australia and other countries using AWBM and similar rainfall–runoff models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
24.
The impact of superthermal particles on nonlinear drift solitary and shock like structures are presented in an inhomogeneous electron-ion plasma with κ-distributed electrons. It is shown that the amplitude of the drift solitons and shocks is modified significantly in the presence of superthermal particles. The condition for the existence of drift solitons is found modified in the presence of higher energy particles. Furthermore, Kadomtsev–Petviashvili (KP) equation is also derived for the present plasma model.  相似文献   
25.
The Rajshahi city is the fourth largest metropolitan city in Bangladesh on the bank of the River Padma (Ganges). Here an upper semi-impervious layer overlies aquifer — the source for large-scale groundwater development. The groundwater resource study using Visual MODFLOW modeling shows that recharge occurs mainly due to infiltration of rainfall and urban return flow at low rate, and water level fluctuates seasonally in response to recharge and discharge. Hydraulic connection between river and aquifer which indicates inflow from high river water levels beyond its boundaries. The total groundwater abstraction in 2004 (15000 million liters) is lower than total input to aquifer reveals an ample potentiality for groundwater development with increasing demand. But groundwater shortage (1000 million liter/year) especially in the vicinity of the River Padma in dry season happens due to its increasing use and fall of river water level resulting in reduced inflows and hence decline in groundwater level. The conjunctive use of surface water-groundwater and its economic use will help for sustainable groundwater supply to avoid adverse impact.  相似文献   
26.
Concentration‐discharge (c‐Q) plots are routinely used as an integrated signal of watershed response to infer solute sources and travel pathways. However, the interpretation of c‐Q data can be difficult unless these data are fitted using statistical models. Such models are frequently applied for geogenic solutes, but it is unclear to what extent they might aid in the investigation of nutrient export patterns, particularly for total dissolved phosphorus (TDP) which is a critical driver of downstream eutrophication problems. The goal of the present study was therefore to statistically model c‐Q relations (where c is TDP concentrations) in a set of contrasting watersheds in the Northern Great Plains—ranging in size from 0.2 to 1000+ km2—to assess the controls of landscape properties on TDP transport dynamics. Six statistical models were fitted to c‐Q data, notably (a) one linear model, (b) one model assuming that c‐Q relations are driven by the mixing of end‐member waters from different landscape locations (i.e., hydrograph separation), (c) one model relying on a biogeochemical stationarity hypothesis (i.e., power law), (d) one model hypothesizing that c‐Q relations change as a function of the solute subsurface contact time (i.e., hyperbolic model), and (e) two models assuming that solute fluxes are mostly dependent on reaction rates (i.e., chemical models). Model performance ranged from mediocre (R2 < 0.2) to very good (R2 > 0.9), but the hydrograph separation model seemed most universal. No watershed was found to exhibit chemostatic behaviour, but many showed signs of dilution or enrichment behaviour. A tendency toward a multi‐model fit and better model performance was observed for watersheds with moderate slope and higher effective drainage area. The relatively poor model performance obtained outside these conditions illustrates the likely importance of controls on TDP concentrations in the region that are independent of flow dynamics.  相似文献   
27.
Cash flows generated from mining projects are typically highly volatile and significantly influenced by a number of exogenous factors including commodity price as one of the most influential uncertainties. In addition, mining projects are complex and many of their executed investment decisions are irreversible. Therefore, management needs to address this potential risk exposure before making an investment decision. Due to the deterioration and fluctuation of mineral commodity prices for a successful mining project acquisition or development, an important and appropriate investment strategy should include a hedging strategy for reducing potential losses suffered by a company. The discounted cash flow methods, which are commonly used to calculate mining project values, often fail to respond to this identified economic uncertainty and also to incorporate de-risking hedging strategies. Therefore, this study approximates the numerical value or value ranges of a mining project considering the combination of a mean reverting commodity price and hedging strategies using continuous time modeling. A novel time-dependent partial differential equation has been proposed using a continuous time, mean reverting model, and hedging strategy to approximate the mining project value. Application of a new real options valuation technique demonstrated its superiority by providing the advantage of mitigating financial losses and procuring financial gains. In this study, some key results are deferral option and expansion option enhanced the maximum values of the project which are, respectively, 2.51 % and 4.4 % compared to the base case. Furthermore, the country risk has a great impact on project values, as when we considered the country risk premium is zero in our model, the project value increases up to 0.97 %.  相似文献   
28.
Tertiary sandstones collected from southwest Sarawak, Malaysia, were analyzed to decipher their provenance, weathering, and tectonic setting. The studied sandstones have a sublitharenite composition and are dominantly composed quartz with little mica and feldspar, and a small amount of volcanic fragments. These sandstones were generally derived from quartz-rich recycled orogenic sources. They have relatively high SiO2 content with low Na2O, CaO, MnO, and MgO contents. Values of Chemical Index of Alteration (CIA) of these rock samples vary from 71 to 93, with an average of 81, implying intense chemical alteration during weathering. A felsic igneous source is suggested by a low concentration of TiO2 compared to CIA, enrichment of Light Rare Earth Elements, depletion of Heavy Rare Earth Elements, and negative Eu anomalies. A felsic origin is further supported by a Eu/Eu* range of 0.65–0.85 and high Th/Sc, La/Sc, La/Co, and Th/Co ratios. This work presents the first reported geochemical data of Tertiary sandstones of the Sarawak Basin. These data led us to conclude that the sandstones were dislodged from recycled orogenic sources and deposited in a slowly subsiding rifted basin in a passive continental tectonic setting.  相似文献   
29.
The concentrations of 16 trace elements (Ag, Al, As, B, Ba, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Se, Ti, U, and Zn) in drinking water from Najran City, Saudi Arabia, were determined by inductively coupled plasma-mass spectrometry (ICP-MS) and compared with local, regional, and international guidelines. Water samples from 22 water treatment plants and 13 commercial bottled water brands were analyzed. Except for B and U, the trace element concentrations were below the permitted limits defined in SASO, GSO, and WHO drinking water quality guidelines. The B concentrations in three brands of bottled water were 533.19, 602.29, and 1471.96 μg/L, which were all higher than the GSO and SASO limit (500 μg/L). The U concentrations were higher than the SASO limits for drinking water in two samples; one in treatment plant (2.39 μg/L) and another in foreign bottled water (2.17 μg/L). The median As, Ba, Cu, Ni, U, and Zn concentrations were statistically significantly higher in the treatment plant water samples than those in the bottled water samples, and conversely, the B concentrations were higher in the bottled water samples. The Cd, Hg, and Ti concentrations were below the detection limits of ICP-MS in all of the water samples. Apart from few exceptions, trace element concentrations in drinking water of Najran City were all within limits permitted in the national, regional, and international drinking water quality guideline values.  相似文献   
30.
The Dupi Tila Formation is composed of yellow to light brown medium to very fine moderately hard to loose sandstone, siltstone, silty clay, mudstone and shale with some conglomerates with clasts of petrified wood. The lithofacies of matrix supported conglomerate, trough cross bedded conglomerate, massive sandstone, trough cross bedded sandstone, planar cross bedded sandstone, ripple cross laminated sandstone-siltstone, flaser laminated sandstone-shale, lenticular laminated sandstone-siltstone-shale, parallel laminated sandstone-siltstone, wavy laminated shale, parallel laminated blue shale, and mudstone are delineated within this formation. Based on the grain size, sedimentary structures, water depth and genesis of individual facies, facies are grouped into three types of facies associations like (i) coarse-grained conglomerate facies association in relation to tractive current deposits of alluvial fan set up at the base of litho-succession (FAC), (ii) medium to fine-grained sandstone-siltstone-mudstone facies association or facies association in relation to strong tide (FAT) characterizing the middle part of litho-succession, (iii) very fine-grained sandstone-siltstone-mudstone facies association in relation to less frequent weak tide or heterolithic facies association (FAHL) characterizing upper part of litho-succession and shallow marine facies association (FASM) composing the uppermost litho-succession. Presence of gluconite indicates that the depositional environment was shallow to deep marine. The dominant paleoflow direction during the deposition of Dupi Tila Formation was toward southeast to southwestern direction. The rivers were of braided type at the piedmont alluvial depositional set up at the lower part, which later changed to estuarine-tidal flat type environmental set up in the middle part to upper part and paleo-environment was shallow marine in the uppermost part.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号