首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53627篇
  免费   699篇
  国内免费   562篇
测绘学   1448篇
大气科学   3803篇
地球物理   9899篇
地质学   19208篇
海洋学   4909篇
天文学   12900篇
综合类   188篇
自然地理   2533篇
  2022年   367篇
  2021年   629篇
  2020年   658篇
  2019年   707篇
  2018年   1583篇
  2017年   1506篇
  2016年   1871篇
  2015年   990篇
  2014年   1747篇
  2013年   2866篇
  2012年   1854篇
  2011年   2373篇
  2010年   2069篇
  2009年   2679篇
  2008年   2297篇
  2007年   2347篇
  2006年   2193篇
  2005年   1621篇
  2004年   1638篇
  2003年   1549篇
  2002年   1472篇
  2001年   1298篇
  2000年   1218篇
  1999年   993篇
  1998年   1040篇
  1997年   947篇
  1996年   819篇
  1995年   783篇
  1994年   685篇
  1993年   604篇
  1992年   592篇
  1991年   593篇
  1990年   622篇
  1989年   493篇
  1988年   504篇
  1987年   528篇
  1986年   487篇
  1985年   610篇
  1984年   673篇
  1983年   590篇
  1982年   561篇
  1981年   499篇
  1980年   469篇
  1979年   477篇
  1978年   458篇
  1977年   368篇
  1976年   345篇
  1975年   357篇
  1974年   308篇
  1973年   342篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Global climate negotiations have been characterized by a divide between developed and developing nations – a split which has served as a persistent barrier to international agreement within the United Nations Framework Convention on Climate Change process. Notable progress in bridging this division was achieved at the 21st Conference of the Parties meeting in Paris through the introduction of Intended Nationally Determined Contributions (INDCs). However, the collective ambition of submitted INDCs falls short of a global 2°C target, requiring an effective ratchet mechanism to review and increase national commitments. Inequitable distribution of additional responsibilities risks re-opening historic divisions between parties. This article presents a flexible ratchet framework which shares mitigation commitments on the basis of per capita equity in line with emerging requirements for a 2°C target. The framework has been designed through convergence between developed and developing nations; developed nation targets are based on an agreed standardized percentage reduction wherever emissions are above per capita equity; developing nations are required to peak emissions at or below per capita equity levels by an agreed convergence date. The proposed framework has the flexibility to be integrated with current INDCs and to evolve in line with shifting estimates of climate sensitivity.

Policy relevance

The outcome of the 21st Conference of the Parties (COP21) negotiations in Paris offered mixed results in terms of level of ambition and submitted national commitments. A global agreement to keep average global temperature rise below two degrees was maintained; however, current pledged Intended Nationally Determined Contributions (INDCs) are projected to result in an average warming of close to three degrees. The implementation of a global ratchet mechanism to scale-up national commitments will remain key to closing this ambition gap to reach this two degree target. How this upscaling of responsibility is shared between parties will be a defining discussion point within future negotiations. This study presents a standardized, equity-based framework for how this ratchet mechanism can be implemented – a framework designed to be flexible for evolution in line with better understanding of climate sensitivity, and adaptable for integrations with current INDC proposals.  相似文献   
992.
In the Kolar greenstone belt of the Dharwar craton, felsic metavolcanics are encountered prominently in its eastern region around Surapalli and Marikoppa. These felsic volcanic rocks are essentially homogeneous and their bulk mineralogy is almost the same. They consist of phenocrysts of quartz and feldspar, set in a fine-grained quartzo-feldspathic groundmass. They are calc-alkaline rhyolite in composition, and are characterized by high SiO2 (av. 75.74 wt.%), moderate Al2O3 (av. 11.84 wt.%), Na2O (av. 3.55 wt.%), K2O (av. 3.26 wt%) contents and low Mg# (av. 6.07), Cr (av. 8 ppm), Ni (av. 8 ppm), Sr (av. 331 ppm.), Y (av. 7 ppm), Yb (av. 0.87 ppm) and Nb/Ta (av. 6.40) values, suggesting Tonalite-Trondhjemite-Granodiorite (TTG) affinity for these felsic volcanics. They are strongly fractionated [(La/Yb)N? = 14.41–48.70] with strong LREE enrichment [(La/Sm)N = 2.50-3.59] and strong HREE depletion [(Gd/Yb)N = 1.34–2.77] with positive Eu anomaly. The regional geological set-up, petrographic and geochemical characteristics suggest that these felsic volcanics probably were derived by partial melting of a subducting basalt slab at shallow depth without much involvement of mantle wedge in an island arc geodynamic setting.  相似文献   
993.
Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef (One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 microM NH4+; 2.3 microM PO4(-3)) rapidly declined, reaching near-background levels (mean = 0.9 microM NH4+; 0.5 microM PO4(-3)) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 microM NH4+; 5.1 microM PO4(-3)) declining to means of 11.3 microM NH4+ and 2.4 microM PO4(-3) at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients. ENCORE has shown that reef organisms and processes investigated in situ were impacted by elevated nutrients. Impacts were dependent on dose level, whether nitrogen and/or phosphorus were elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment were visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs. inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies.  相似文献   
994.
Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating “Mount Elbert C2 zone like reservoir”, “PBU L-Pad like reservoir” and “PBU L-Pad down dip like reservoir” were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16 × 106 m3/well to 8.22 × 108 m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods.  相似文献   
995.
Anabranching is characteristic of a number of rivers in diverse environmental settings worldwide, but has only infrequently been described from bedrock-influenced rivers. A prime example of a mixed bedrock-alluvial anabranching river is provided by a 150-km long reach of the Orange River above Augrabies Falls, Northern Cape Province, South Africa. Here, the perennial Orange flows through arid terrain consisting mainly of Precambrian granites and gneisses, and the river has preferentially eroded bedrock joints, fractures and foliations to form multiple channels which divide around numerous, large (up to 15 km long and 2 km wide), stable islands formed of alluvium and/or bedrock. Significant local variations in channel-bed gradient occur along the river, which strongly control anabranching style through an influence on local sediment budgets. In relatively long (>10 km), lower gradient reaches (<0.0013) within the anabranching reach, sediment supply exceeds local transport capacity, bedrock usually only crops out in channel beds, and channels divide around alluvial islands which are formed by accretion in the lee of bedrock outcrop or at the junction with ephemeral tributaries. Riparian vegetation probably plays a key role in the survival and growth of these islands by increasing flow roughness, inducing deposition, and stabilising the sediments. Less commonly, channels may form by eroding into once-continuous island or floodplain surfaces. In shorter (<10 km), higher gradient reaches (>0.0013) within the anabranching reach, local transport capacity exceeds sediment supply, bedrock crops out extensively, and channels flow over an irregular bedrock pavement or divide around rocky islands. Channel incision into bedrock probably occurs mainly by abrasion, with the general absence of boulder bedforms suggesting that hydraulic plucking is relatively unimportant in this setting. Mixed bedrock-alluvial anabranching also occurs in a number of other rivers worldwide, and appears to be a stable and often long-lived river pattern adjusted to a number of factors commonly acting in combination: (1) jointed/fractured granitoid rock outcrop; (2) erosion-resistant banks and islands; (3) locally variable channel-bed gradients; (4) variable flow regimes.  相似文献   
996.
Lower Palaeogene extrusive igneous rocks of the Faroe Islands Basalt Group (FIBG) dominate the Faroese continental margin, with flood basalts created at the time of breakup and separation from East Greenland extending eastwards into the Faroe‐Shetland Basin. This volcanic succession was emplaced in connection with the opening of the NE Atlantic; however, consensus on the age and duration of volcanism remains lacking. On the Faroe Islands, the FIBG comprises four main basaltic formations (the pre‐breakup Lopra and Beinisvørð formations, and the syn‐breakup Malinstindur and Enni formations) locally separated by thin intrabasaltic sedimentary and/or volcaniclastic units. Offshore, the distribution of these formations remains ambiguous. We examine the stratigraphic framework of these rocks on the Faroese continental margin combining onshore (published) outcrop information with offshore seismic‐reflection and well data. Our results indicate that on seismic‐reflection profiles, the FIBG can be informally divided into lower and upper seismic‐stratigraphic packages separated by the strongly reflective A‐horizon. The Lower FIBG comprises the Lopra and Beinisvørð formations; the upper FIBG includes the Malinstindur and Enni formations. The strongly reflecting A‐horizon is a consequence of the contrast in properties of the overlying Malinstindur and underlying Beinisvørð formations. Onshore, the A‐horizon is an erosional surface, locally cutting down into the Beinisvørð Formation; offshore, we have correlated the A‐horizon with the Flett unconformity, a highly incised, subaerial unconformity, within the juxtaposed and interbedded sedimentary fill of the Faroe‐Shetland Basin. We refer to this key regional boundary as the A‐horizon/Flett unconformity. The formation of this unconformity represents the transition from the pre‐breakup to the syn‐breakup phase of ocean margin development in the Faroe–Shetland region. We examine the wider implications of this correlation considering existing stratigraphic models for the FIBG, discussing potential sources of uncertainty in the correlation of the lower Palaeogene succession across the Faroe–Shetland region, and implications for the age and duration of the volcanism.  相似文献   
997.
Carbonate sediments in non‐vegetated habitats on the north‐east Adriatic shelf are dominated by shells of molluscs. However, the rate of carbonate molluscan production prior to the 20th century eutrophication and overfishing on this and other shelves remains unknown because: (i) monitoring of ecosystems prior to the 20th century was scarce; and (ii) ecosystem history inferred from cores is masked by condensation and mixing. Here, based on geochronological dating of four bivalve species, carbonate production during the Holocene is assessed in the Gulf of Trieste, where algal and seagrass habitats underwent a major decline during the 20th century. Assemblages of sand‐dwelling Gouldia minima and opportunistic Corbula gibba are time‐averaged to >1000 years and Corbula gibba shells are older by >2000 years than shells of co‐occurring Gouldia minima. This age difference is driven by temporally disjunct production of two species coupled with decimetre‐scale mixing. Stratigraphic unmixing shows that Corbula gibba declined in abundance during the highstand phase and increased again during the 20th century. In contrast, one of the major contributors to carbonate sands – Gouldia minima – increased in abundance during the highstand phase, but declined to almost zero abundance over the past two centuries. Gouldia minima and herbivorous gastropods associated with macroalgae or seagrasses are abundant in the top‐core increments but are rarely alive. Although Gouldia minima is not limited to vegetated habitats, it is abundant in such habitats elsewhere in the Mediterranean Sea. This live–dead mismatch reflects the difference between highstand baseline communities (with soft‐bottom vegetated zones and hard‐bottom Arca beds) and present‐day oligophotic communities with organic‐loving species. Therefore, the decline in light penetration and the loss of vegetated habitats with high molluscan production traces back to the 19th century. More than 50% of the shells on the sea floor in the Gulf of Trieste reflect inactive production that was sourced by heterozoan carbonate factory in algal or seagrass habitats.  相似文献   
998.
Bioeroding sponges belong to the most dominant bioeroders, significantly contributing to the erosion of coral reefs. Some species are tolerant or even benefit from environmental conditions such as ocean warming, acidification, and eutrophication. In consequence, increases in sponge bioerosion have been observed on some coral reefs over the last decades. The Abrolhos Bank is the largest coral reef system in the South Atlantic. It has been affected by sedimentation, eutrophication, overfishing, and climate change, mainly affecting coastal reefs, and at lesser intensity outer ones as well. This study aimed to describe spatial and temporal patterns in bioeroding sponge distribution in carbonate substrates in the Abrolhos Bank. Photo‐quadrats were used to compare bioeroding sponge abundance between two shallow reefs: a coastal, Pedra de Leste (PL), and an outer reef, Parcel dos Abrolhos (PAB). Each individual was delimitated over the substrate by determining the sponge surface through a line connecting the outermost papillae. The study was conducted over 6 years in 2008–2009 and 2013–2016. Four species of bioeroding sponges were identified: Cliona carteri Ridley, 1881, C. delitrix Pang, 1973, C. cf. schmidtii Ridley, 1881, and Siphonodictyon coralliphagum Rützler, 1971. The distribution and abundance of species varied between the inner and outer reefs and across the years, and displayed certain selectivity for the calcareous substrates recorded. Crustose coralline algae (CCA) were the main substrate excavated by the most abundant bioeroding species, C. carteri, and represented 70% of the substrate types occupied by this sponge (CCA, coral overgrown by CCA and plain coral). The highest abundance of bioeroding sponges observed in photo‐quadrats was 21.3 individuals/m2 at the outer reefs (PAB) in 2014. The abundances or areal extents of bioeroding sponges were up to 10 times greater on the outer reefs than on the coastal ones, where sedimentation is higher and more strongly influenced by siliciclastic material. Moreover, a higher herbivorous fish biomass has been reported on outer reefs which could also influence the higher abundance of bioeroding sponges in outer reefs. During the study period of 6 years, an increase in bioeroding sponge abundance was observed at the outer reefs (PAB), with the sea surface temperature increase. As CCA have an important role in reefal cementation and carbonate production in the Abrolhos reefs, a bioerosion impact might be expected, in particular, on the outer reefs.  相似文献   
999.
Impact of increased vertical resolution on simulation of tropical climate   总被引:1,自引:0,他引:1  
Summary The aim of this study is to describe the behaviour of tropical dynamics in the ECHAM4 model when increased vertical resolution around the tropopause and in the planetary boundary layer is used. In this work we perform experiments with the ECHAM4 model using T30 horizontal resolution and 19 and 42 vertical levels. The impact of the increased vertical resolution on the simulation of tropical clouds and precipitation has been investigated. Therefore, the dynamic fields related to tropical convection have been analyzed. The results suggest a beneficial effect of the increased number of vertical levels on the convective scheme performance and on the related dynamic fields over the Tropics. The improvement of the rainfall climatologies in the 42-level model has been explained via the impact of vertical resolution on the cloud structure. In the cloud spectrum of the L42 simulation, a third peak appears around 600 hPa, revealing that when using higher vertical resolution the convective parametrization starts to represent cumulus congestus clouds.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号