全文获取类型
收费全文 | 53627篇 |
免费 | 699篇 |
国内免费 | 562篇 |
专业分类
测绘学 | 1448篇 |
大气科学 | 3803篇 |
地球物理 | 9899篇 |
地质学 | 19208篇 |
海洋学 | 4909篇 |
天文学 | 12900篇 |
综合类 | 188篇 |
自然地理 | 2533篇 |
出版年
2022年 | 367篇 |
2021年 | 629篇 |
2020年 | 658篇 |
2019年 | 707篇 |
2018年 | 1583篇 |
2017年 | 1506篇 |
2016年 | 1871篇 |
2015年 | 990篇 |
2014年 | 1747篇 |
2013年 | 2866篇 |
2012年 | 1854篇 |
2011年 | 2373篇 |
2010年 | 2069篇 |
2009年 | 2679篇 |
2008年 | 2297篇 |
2007年 | 2347篇 |
2006年 | 2193篇 |
2005年 | 1621篇 |
2004年 | 1638篇 |
2003年 | 1549篇 |
2002年 | 1472篇 |
2001年 | 1298篇 |
2000年 | 1218篇 |
1999年 | 993篇 |
1998年 | 1040篇 |
1997年 | 947篇 |
1996年 | 819篇 |
1995年 | 783篇 |
1994年 | 685篇 |
1993年 | 604篇 |
1992年 | 592篇 |
1991年 | 593篇 |
1990年 | 622篇 |
1989年 | 493篇 |
1988年 | 504篇 |
1987年 | 528篇 |
1986年 | 487篇 |
1985年 | 610篇 |
1984年 | 673篇 |
1983年 | 590篇 |
1982年 | 561篇 |
1981年 | 499篇 |
1980年 | 469篇 |
1979年 | 477篇 |
1978年 | 458篇 |
1977年 | 368篇 |
1976年 | 345篇 |
1975年 | 357篇 |
1974年 | 308篇 |
1973年 | 342篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Global climate negotiations have been characterized by a divide between developed and developing nations – a split which has served as a persistent barrier to international agreement within the United Nations Framework Convention on Climate Change process. Notable progress in bridging this division was achieved at the 21st Conference of the Parties meeting in Paris through the introduction of Intended Nationally Determined Contributions (INDCs). However, the collective ambition of submitted INDCs falls short of a global 2°C target, requiring an effective ratchet mechanism to review and increase national commitments. Inequitable distribution of additional responsibilities risks re-opening historic divisions between parties. This article presents a flexible ratchet framework which shares mitigation commitments on the basis of per capita equity in line with emerging requirements for a 2°C target. The framework has been designed through convergence between developed and developing nations; developed nation targets are based on an agreed standardized percentage reduction wherever emissions are above per capita equity; developing nations are required to peak emissions at or below per capita equity levels by an agreed convergence date. The proposed framework has the flexibility to be integrated with current INDCs and to evolve in line with shifting estimates of climate sensitivity.Policy relevanceThe outcome of the 21st Conference of the Parties (COP21) negotiations in Paris offered mixed results in terms of level of ambition and submitted national commitments. A global agreement to keep average global temperature rise below two degrees was maintained; however, current pledged Intended Nationally Determined Contributions (INDCs) are projected to result in an average warming of close to three degrees. The implementation of a global ratchet mechanism to scale-up national commitments will remain key to closing this ambition gap to reach this two degree target. How this upscaling of responsibility is shared between parties will be a defining discussion point within future negotiations. This study presents a standardized, equity-based framework for how this ratchet mechanism can be implemented – a framework designed to be flexible for evolution in line with better understanding of climate sensitivity, and adaptable for integrations with current INDC proposals. 相似文献
992.
A. G. Ugarkar S. N. Solankar V. N. Vasudev 《Journal of the Geological Society of India》2013,81(2):192-202
In the Kolar greenstone belt of the Dharwar craton, felsic metavolcanics are encountered prominently in its eastern region around Surapalli and Marikoppa. These felsic volcanic rocks are essentially homogeneous and their bulk mineralogy is almost the same. They consist of phenocrysts of quartz and feldspar, set in a fine-grained quartzo-feldspathic groundmass. They are calc-alkaline rhyolite in composition, and are characterized by high SiO2 (av. 75.74 wt.%), moderate Al2O3 (av. 11.84 wt.%), Na2O (av. 3.55 wt.%), K2O (av. 3.26 wt%) contents and low Mg# (av. 6.07), Cr (av. 8 ppm), Ni (av. 8 ppm), Sr (av. 331 ppm.), Y (av. 7 ppm), Yb (av. 0.87 ppm) and Nb/Ta (av. 6.40) values, suggesting Tonalite-Trondhjemite-Granodiorite (TTG) affinity for these felsic volcanics. They are strongly fractionated [(La/Yb)N? = 14.41–48.70] with strong LREE enrichment [(La/Sm)N = 2.50-3.59] and strong HREE depletion [(Gd/Yb)N = 1.34–2.77] with positive Eu anomaly. The regional geological set-up, petrographic and geochemical characteristics suggest that these felsic volcanics probably were derived by partial melting of a subducting basalt slab at shallow depth without much involvement of mantle wedge in an island arc geodynamic setting. 相似文献
993.
ENCORE: the effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions 总被引:10,自引:0,他引:10
Koop K Booth D Broadbent A Brodie J Bucher D Capone D Coll J Dennison W Erdmann M Harrison P Hoegh-Guldberg O Hutchings P Jones GB Larkum AW O'Neil J Steven A Tentori E Ward S Williamson J Yellowlees D 《Marine pollution bulletin》2001,42(2):91-120
Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef (One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 microM NH4+; 2.3 microM PO4(-3)) rapidly declined, reaching near-background levels (mean = 0.9 microM NH4+; 0.5 microM PO4(-3)) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 microM NH4+; 5.1 microM PO4(-3)) declining to means of 11.3 microM NH4+ and 2.4 microM PO4(-3) at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients. ENCORE has shown that reef organisms and processes investigated in situ were impacted by elevated nutrients. Impacts were dependent on dose level, whether nitrogen and/or phosphorus were elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment were visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs. inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies. 相似文献
994.
Masanori Kurihara Akihiko SatoKunihiro Funatsu Hisanao OuchiYoshihiro Masuda Hideo NaritaTimothy S. Collett 《Marine and Petroleum Geology》2011,28(2):502-516
Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating “Mount Elbert C2 zone like reservoir”, “PBU L-Pad like reservoir” and “PBU L-Pad down dip like reservoir” were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16 × 106 m3/well to 8.22 × 108 m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. 相似文献
995.
Anabranching is characteristic of a number of rivers in diverse environmental settings worldwide, but has only infrequently been described from bedrock-influenced rivers. A prime example of a mixed bedrock-alluvial anabranching river is provided by a 150-km long reach of the Orange River above Augrabies Falls, Northern Cape Province, South Africa. Here, the perennial Orange flows through arid terrain consisting mainly of Precambrian granites and gneisses, and the river has preferentially eroded bedrock joints, fractures and foliations to form multiple channels which divide around numerous, large (up to 15 km long and 2 km wide), stable islands formed of alluvium and/or bedrock. Significant local variations in channel-bed gradient occur along the river, which strongly control anabranching style through an influence on local sediment budgets. In relatively long (>10 km), lower gradient reaches (<0.0013) within the anabranching reach, sediment supply exceeds local transport capacity, bedrock usually only crops out in channel beds, and channels divide around alluvial islands which are formed by accretion in the lee of bedrock outcrop or at the junction with ephemeral tributaries. Riparian vegetation probably plays a key role in the survival and growth of these islands by increasing flow roughness, inducing deposition, and stabilising the sediments. Less commonly, channels may form by eroding into once-continuous island or floodplain surfaces. In shorter (<10 km), higher gradient reaches (>0.0013) within the anabranching reach, local transport capacity exceeds sediment supply, bedrock crops out extensively, and channels flow over an irregular bedrock pavement or divide around rocky islands. Channel incision into bedrock probably occurs mainly by abrasion, with the general absence of boulder bedforms suggesting that hydraulic plucking is relatively unimportant in this setting. Mixed bedrock-alluvial anabranching also occurs in a number of other rivers worldwide, and appears to be a stable and often long-lived river pattern adjusted to a number of factors commonly acting in combination: (1) jointed/fractured granitoid rock outcrop; (2) erosion-resistant banks and islands; (3) locally variable channel-bed gradients; (4) variable flow regimes. 相似文献
996.
Jana
lavsdttir Martyn S. Stoker Lars O. Boldreel Morten Sparre Andersen
luva R. Eidesgaard 《Basin Research》2019,31(5):841-865
Lower Palaeogene extrusive igneous rocks of the Faroe Islands Basalt Group (FIBG) dominate the Faroese continental margin, with flood basalts created at the time of breakup and separation from East Greenland extending eastwards into the Faroe‐Shetland Basin. This volcanic succession was emplaced in connection with the opening of the NE Atlantic; however, consensus on the age and duration of volcanism remains lacking. On the Faroe Islands, the FIBG comprises four main basaltic formations (the pre‐breakup Lopra and Beinisvørð formations, and the syn‐breakup Malinstindur and Enni formations) locally separated by thin intrabasaltic sedimentary and/or volcaniclastic units. Offshore, the distribution of these formations remains ambiguous. We examine the stratigraphic framework of these rocks on the Faroese continental margin combining onshore (published) outcrop information with offshore seismic‐reflection and well data. Our results indicate that on seismic‐reflection profiles, the FIBG can be informally divided into lower and upper seismic‐stratigraphic packages separated by the strongly reflective A‐horizon. The Lower FIBG comprises the Lopra and Beinisvørð formations; the upper FIBG includes the Malinstindur and Enni formations. The strongly reflecting A‐horizon is a consequence of the contrast in properties of the overlying Malinstindur and underlying Beinisvørð formations. Onshore, the A‐horizon is an erosional surface, locally cutting down into the Beinisvørð Formation; offshore, we have correlated the A‐horizon with the Flett unconformity, a highly incised, subaerial unconformity, within the juxtaposed and interbedded sedimentary fill of the Faroe‐Shetland Basin. We refer to this key regional boundary as the A‐horizon/Flett unconformity. The formation of this unconformity represents the transition from the pre‐breakup to the syn‐breakup phase of ocean margin development in the Faroe–Shetland region. We examine the wider implications of this correlation considering existing stratigraphic models for the FIBG, discussing potential sources of uncertainty in the correlation of the lower Palaeogene succession across the Faroe–Shetland region, and implications for the age and duration of the volcanism. 相似文献
997.
Adam Tomaových Ivo Gallmetzer Alexandra Haselmair Darrell S. Kaufman Borut Mavri
Martin Zuschin 《Sedimentology》2019,66(3):781-807
Carbonate sediments in non‐vegetated habitats on the north‐east Adriatic shelf are dominated by shells of molluscs. However, the rate of carbonate molluscan production prior to the 20th century eutrophication and overfishing on this and other shelves remains unknown because: (i) monitoring of ecosystems prior to the 20th century was scarce; and (ii) ecosystem history inferred from cores is masked by condensation and mixing. Here, based on geochronological dating of four bivalve species, carbonate production during the Holocene is assessed in the Gulf of Trieste, where algal and seagrass habitats underwent a major decline during the 20th century. Assemblages of sand‐dwelling Gouldia minima and opportunistic Corbula gibba are time‐averaged to >1000 years and Corbula gibba shells are older by >2000 years than shells of co‐occurring Gouldia minima. This age difference is driven by temporally disjunct production of two species coupled with decimetre‐scale mixing. Stratigraphic unmixing shows that Corbula gibba declined in abundance during the highstand phase and increased again during the 20th century. In contrast, one of the major contributors to carbonate sands – Gouldia minima – increased in abundance during the highstand phase, but declined to almost zero abundance over the past two centuries. Gouldia minima and herbivorous gastropods associated with macroalgae or seagrasses are abundant in the top‐core increments but are rarely alive. Although Gouldia minima is not limited to vegetated habitats, it is abundant in such habitats elsewhere in the Mediterranean Sea. This live–dead mismatch reflects the difference between highstand baseline communities (with soft‐bottom vegetated zones and hard‐bottom Arca beds) and present‐day oligophotic communities with organic‐loving species. Therefore, the decline in light penetration and the loss of vegetated habitats with high molluscan production traces back to the 19th century. More than 50% of the shells on the sea floor in the Gulf of Trieste reflect inactive production that was sourced by heterozoan carbonate factory in algal or seagrass habitats. 相似文献
998.
Fernando Coreixas de Moraes Fernanda Cervi Cludia S. Karez Leonardo T. Salgado Rodrigo L. Moura Gabriella A. Leal Alex C. Bastos Gilberto M. Amado‐Filho 《Marine Ecology》2019,40(3)
Bioeroding sponges belong to the most dominant bioeroders, significantly contributing to the erosion of coral reefs. Some species are tolerant or even benefit from environmental conditions such as ocean warming, acidification, and eutrophication. In consequence, increases in sponge bioerosion have been observed on some coral reefs over the last decades. The Abrolhos Bank is the largest coral reef system in the South Atlantic. It has been affected by sedimentation, eutrophication, overfishing, and climate change, mainly affecting coastal reefs, and at lesser intensity outer ones as well. This study aimed to describe spatial and temporal patterns in bioeroding sponge distribution in carbonate substrates in the Abrolhos Bank. Photo‐quadrats were used to compare bioeroding sponge abundance between two shallow reefs: a coastal, Pedra de Leste (PL), and an outer reef, Parcel dos Abrolhos (PAB). Each individual was delimitated over the substrate by determining the sponge surface through a line connecting the outermost papillae. The study was conducted over 6 years in 2008–2009 and 2013–2016. Four species of bioeroding sponges were identified: Cliona carteri Ridley, 1881, C. delitrix Pang, 1973, C. cf. schmidtii Ridley, 1881, and Siphonodictyon coralliphagum Rützler, 1971. The distribution and abundance of species varied between the inner and outer reefs and across the years, and displayed certain selectivity for the calcareous substrates recorded. Crustose coralline algae (CCA) were the main substrate excavated by the most abundant bioeroding species, C. carteri, and represented 70% of the substrate types occupied by this sponge (CCA, coral overgrown by CCA and plain coral). The highest abundance of bioeroding sponges observed in photo‐quadrats was 21.3 individuals/m2 at the outer reefs (PAB) in 2014. The abundances or areal extents of bioeroding sponges were up to 10 times greater on the outer reefs than on the coastal ones, where sedimentation is higher and more strongly influenced by siliciclastic material. Moreover, a higher herbivorous fish biomass has been reported on outer reefs which could also influence the higher abundance of bioeroding sponges in outer reefs. During the study period of 6 years, an increase in bioeroding sponge abundance was observed at the outer reefs (PAB), with the sea surface temperature increase. As CCA have an important role in reefal cementation and carbonate production in the Abrolhos reefs, a bioerosion impact might be expected, in particular, on the outer reefs. 相似文献
999.
Summary The aim of this study is to describe the behaviour of tropical dynamics in the ECHAM4 model when increased vertical resolution
around the tropopause and in the planetary boundary layer is used. In this work we perform experiments with the ECHAM4 model
using T30 horizontal resolution and 19 and 42 vertical levels. The impact of the increased vertical resolution on the simulation
of tropical clouds and precipitation has been investigated. Therefore, the dynamic fields related to tropical convection have
been analyzed.
The results suggest a beneficial effect of the increased number of vertical levels on the convective scheme performance and
on the related dynamic fields over the Tropics. The improvement of the rainfall climatologies in the 42-level model has been
explained via the impact of vertical resolution on the cloud structure. In the cloud spectrum of the L42 simulation, a third
peak appears around 600 hPa, revealing that when using higher vertical resolution the convective parametrization starts to
represent cumulus congestus clouds. 相似文献
1000.