首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   12篇
  国内免费   11篇
测绘学   12篇
大气科学   14篇
地球物理   64篇
地质学   105篇
海洋学   7篇
综合类   4篇
自然地理   14篇
  2024年   1篇
  2023年   2篇
  2022年   13篇
  2021年   11篇
  2020年   17篇
  2019年   6篇
  2018年   23篇
  2017年   24篇
  2016年   26篇
  2015年   13篇
  2014年   20篇
  2013年   25篇
  2012年   7篇
  2011年   8篇
  2010年   5篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
81.
This study investigated the tidal asymmetry imposed by both the interaction of principal tides and the higher harmonics generated by distortions within a tidal creek network with mixed mainly semidiurnal tide in the Bushehr Port, Persian Gulf. Since velocity and water-level imposed by principal triad tides K1-O1-M2 are in quadrature, duration asymmetries during a tidal period in this short, shallow inverse estuary should be manifest as skewed velocities. The principal tides produce periodic asymmetries including a strong ebb-dominance and a weak flood-dominance condition during spring and neap tides respectively. The higher harmonics induced by nonlinearities engender a flood-dominance condition where the convergence effects are higher than frictional effects, and an ebbdominance condition where intertidal storage are extended. Since the triad K1-O1-M2 driven asymmetry is not overcome by higher harmonics close to the mouth, the periodic asymmetry dominates within the creek in which higher harmonics reinforce the weak flood-dominance (strong ebb-dominance) condition in the convergent channel (divergent area). Also, the maximum flood and the maximum ebb from all harmonic constituents occurred close to high water slack time during both spring and neap tides in this short creek. Since occational wetting of intertidal areas happened close to the high water (HW) time during spring tide, the water level flooded slowly close to the HW time of the spring tide.  相似文献   
82.
The purpose of current study is to produce groundwater qanat potential map using frequency ratio (FR) and Shannon's entropy (SE) models in the Moghan watershed, Khorasan Razavi Province, Iran. The qanat is basically a horizontal, interconnected series of underground tunnels that accumulate and deliver groundwater from a mountainous source district, along a water- bearing formation (aquifer), and to a settlement. A qanat locations map was prepared for study area in 2013 based on a topographical map at a 1:50,000-scale and extensive field surveys. 53 qanat locations were detected in the field surveys. 70 % (38 locations) of the qanat locations were used for groundwater potential mapping and 30 % (15 locations) were used for validation. Fourteen effective factors were considered in this investigation such as slope degree, slope aspect, altitude, topographic wetness index (TWI), stream power index (SPI), slope length (LS), plan curvature, profile curvature, distance to rivers, distance to faults, lithology, land use, drainage density, and fault density. Using the above conditioning factors, groundwater qanat potential map was generated implementing FR and SE models, and the results were plotted in ArcGIS. The predictive capability of frequency ratio and Shannon's entropy models were determined by the area under the relative operating characteristic curve. The area under the curve (AUC) for frequency ratio model was calculated as 0.8848. Also AUC for Shannon's entropy model was 0.9121, which depicts the excellence of this model in qanat occurrence potential estimation in the study area. So the Shannon's entropy model has higher AUC than the frequency ratio model. The produced groundwater qanat potential maps can assist planners and engineers in groundwater development plans and land use planning.  相似文献   
83.
Modeling flood event characteristics using D-vine structures   总被引:1,自引:0,他引:1  
The authors investigate the use of drawable (D-)vine structures to model the dependences existing among the main characteristics of a flood event, i.e., flood volume, flood peak, duration, and peak time. Firstly, different three- and four-dimensional probability distributions were built considering all the permutations of the conditioning variables. The Frank copula was used to model the dependence of each pair of variables. Then, the appropriate D-vine structures were selected using information criteria and a goodness-of-fit test. The influence of varying the data length on the selected D-vine structure was also investigated. Finally, flood event characteristics were simulated using the four-dimensional D-vine structure.  相似文献   
84.
The relationship between spatial patterns of macrobenthos community characteristics and environmental conditions(salinity, temperature, dissolved oxygen, organic matter content, sand, silt and clay) was investigated throughout the Gorgan Bay in June 2010. Principal components analysis(PCA) based on environmental data separated eastern and western stations. The maximum(4500 ind./m2) and minimum(411 ind./m2) densities were observed at Stas 1 and 6, respectively. Polychaeta was the major group and Streblospio gynobranchiata was dominant species in the bay. According to Distance Based Linear Models results, macrofaunal total density was correlated with silt percentage and salinity and these two factors explaining 64% of the variability while macrofaunal community structure just correlated with salinity(22% total variation). In general, western part of the bay showed the highest number of species and biodiversity while, the highest density was found at Sta. 1 and in the middle part of the bay. Furthermore, relationship between diversity indices and macrobenthic species with measured factors is also discussed. Our results confirm the effect of salinity as an important factor on distribution of macrobenthic fauna in south Caspian brackish waters.  相似文献   
85.
Scour and flow field around a spur dike in a 90° bend   总被引:2,自引:1,他引:1  
Spur dike is an important element in river training that creates rapid variations in flow field, sediment transport and bed topography. The mechanism of flow and sediment transport in a channel bend is very complex, especially when a spur dike is constructed in a bend. Most of previous investigations on flow behavior and scour around spur dike were carried out in straight channels. In this paper results of experiments on flow field and scour around a spur dike in a 90 degree channel bend are presented. Sand with uniform grain size was used as the bed material. Experiments were conducted for different locations and different lengths of spur dikes at the bend with different values of discharge. The three dimensional flow fields around a spur dike were investigated. The maximum depth of scour was correlated to the Froude numbers, lengths and the locations of spur dike in the bend.  相似文献   
86.
Reservoir sedimentation resulting fromwater erosion is an important environmental issue inmany countries where storage of water is crucial for economic and agricultural development.Therefore,this paper reports results from analysis of the soil hydrological response,i.e.soil water erosion,to simulated rainfall resulting in sediment accumulation at the reservoir of Ekbatan Dam(Hamedan province,Iran).Also,another objective of this study was to simulate the future trends in reservoir sedimentation(soil loss rate;SLR)from indoor rainfall simulator data by multiple linear regression(MLR)and Artificial Neural Networks(ANNs).For this research,three sampling points with different types of soils were chosen including clayey sand soil(SC-SM),silty soil(ML),and clayey soil(CL).The input parameters were slope gradient(sin θ),soil type(St),water content(w),dry density(γd),shear strength(τ),unconfined compressive strength(qu),permeability(k),and California bearing ratio(CBR).Using MLR and ANN methods,7 models were developed with 2 constant predictors(i.e.sin θ and St)and 6 free predictors which were added in each step one by one.Among MLR models,model 5 with St,sin θ,γd,τ,w,and qu as input parameters was statistically significant.Among ANN models,model 4 with St,sin θ,?d,τ,and w as input parameters,9 nodes,and 1 hidden layer was statistically significant.The root mean square error(RMSE),mean error(ME),and correlation coefficient(R)values were 1.433 kg/m^2 h,0.0195 kg/m^2 h,and 0.698 for the MLRmodel and 0.38 kg/m^2 h,0.151 kg/m^2 h,and 0.98 for the ANN model,respectively.These results show that the ANN model could better predict the SLR in comparison to the MLR model.The results also demonstrate that shear strength,among the strength parameters,had a greater impact on the SLR than compressive strengths(qu and CBR).Last but not the least,the reservoir sedimentationwas estimated for all methods and compared with the observed data.The results indicate that the ANN model is more appropriate for forecasting/simulating the sediment yield for a small watershed.  相似文献   
87.
China Ocean Engineering - Multiple reflections of the waves between structure and wavemaker in hydraulic flumes could change the frequency content of the desired incident wave or result in...  相似文献   
88.
89.
ABSTRACT

In order to provide more accurate reservoir-operating policies, this study attempts to implement effective monthly forecasting models. Seven inflow forecasting schemes, applying discrete wavelet transformation and artificial neural networks are proposed and provided to forecast the monthly inflow of Dez Reservoir. Based on some different performance indicators the best scheme is achieved comparing to the observed data. The best forecasting model is coupled with a simulation-optimization framework, in which the performance of five different reservoir rule curves can be compared. Three applied rules are based on conventional Standard operation policy, Regression rules, and Hedging rule, and two others are forecasting-based regression and hedging rules. The results indicate that forecasting-based operating rule curves are superior to the conventional rules if the forecasting scheme provides results accurately. Moreover, it can be concluded that the time series decomposition of the observed data enhances the accuracy of the forecasting results efficiently.  相似文献   
90.
The present study proposes a methodology for predicting the vertical light nonaqueous-phase liquids (LNAPLs) distribution within an aquifer by considering the influence of water table fluctuations. The LNAPL distribution is predicted by combining (1) information on air/LNAPL and LNAPL/water interface elevations with (2) the initial elevation of the water table without LNAPL effect. Data used in the present study were collected during groundwater monitoring undertaken over a period of 4 months at a LNAPL-impacted observation well. In this study, the water table fluctuations raised the free LNAPL in the subsurface to an elevation of 206.63 m, while the lowest elevation was 205.70 m, forming a thickness of 0.93 m of LNAPL-impacted soil. Results show that the apparent LNAPL thickness in the observation well is found to be three times greater than the actual free LNAPL thickness in soil; a finding that agrees with previous studies reporting that apparent LNAPL thickness in observation wells typically exceeds the free LNAPL thickness within soil by a factor estimated to range between 2 and 10. The present study provides insights concerning the transient variation of LNAPL distribution within the subsurface and highlights the capability of the proposed methodology to mathematically predict the actual LNAPL thickness in the subsurface, without the need to conduct laborious field tests. Practitioners can use the proposed methodology to determine by how much the water table should be lowered, through pumping, to isolate the LNAPL-impacted soil within the unsaturated zone, which can then be subjected to in situ vadose zone remedial treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号